ta có : 22^2n=24n=(24)n=16n
ta thấy rằng số nào có tận cùng bằng 6 khi nâng lên lũy thừa nào cũng tận cùng bằng 6
suy ra 16n=(...6)
ta có: (...6)+10=(...6)
mà (...6) luôn chia hết cho 13
suy ra (22^2n +10) chia hết cho 3
CHÚC BẠN HỌC TỐT!!!!!
ta có : 22^2n=24n=(24)n=16n
ta thấy rằng số nào có tận cùng bằng 6 khi nâng lên lũy thừa nào cũng tận cùng bằng 6
suy ra 16n=(...6)
ta có: (...6)+10=(...6)
mà (...6) luôn chia hết cho 13
suy ra (22^2n +10) chia hết cho 3
CHÚC BẠN HỌC TỐT!!!!!
Chứng minh : Với mọi n thuộc Z ta có :
a) \(n^2\left(n-1\right)\)chia hết cho 12
b)\(n^2\left(n^4-1\right)\) chia hết cho 60
c) \(n^5-n\) chia hết cho 30
d) \(2n\left(16-n^4\right)\) chia hết cho 30.
Chứng minh 34n+1+32n.10-13 chia hết cho 64 với mọi n.
Chứng minh rằng :\(4n^2-2n+13\) không chia hết cho 289
Chứng minh 42n + 1 + 3n + 2 chia hết cho 13.
Chứng minh : 42n + 1 + 3n + 2 chia hết cho 13.
a) cho \(0\le x\le3;0\le y\le4\)chứng minh rằng: \(\left(3-x\right)\left(4-y\right)\left(2x+3y\right)\le36\)
b) chứng minh rằng: với n là số tự nhiên thì: \(11^{n+2}+12^{2n+1}\)chia hết cho 133.
chứng tỏ rằng : a=10! + 1.3.5...9 chia hết cho 5
chứng tỏ rằng : b=10! + 1.3.5...9 + 2009 chia hết cho 2
chứng tỏ rằng : c= 17^17 + 13^13 chia hết cho 2 và 5
chứng tỏ rằng : d= 17^17 - 13^13 chia hết cho 2 nhưng ko chia hết cho 5
cho \(x=\left(3+\sqrt{5}\right)^{10}+\left(3-\sqrt{5}\right)^{10}\)
chứng minh x thuộc N* và x chia hết cho 1024
CMR: \(2^{2n}\left(2^{2n+1}-1\right)-1\)chia hết cho 9