Chứng minh giá trị của biểu thức sau không phụ thuộc vào giá trị của biến : A = (t+2)(3t-1)-t(3t+3)
B = (2a-3)(2a+3) - a (3+4a)+3a+1
C = (4-c)(4-c)+(2-c)c+6c+2002
Bài 3. Chứng minh rằng giá trị của biểu thức không phụ thuộc vào giá trị của biến
B=(2a−3)(2a+3)−a(3+4a)+3a+1
1C/M biểu thức sau ko phụ thuộc vào giá trị của biến :
C=(2a-2).(2a+3)-a(3+4a)+3a+1
2 Tìm x bik:
(x+3).(x-1)-x(x-5)=11
Chứng minh các biểu thức sau có giá trị không phụ thuộc vào biến:
a) A = a − 3 a a 2 + 2 a + 1 a − 2 a + 4 a với a ≠ 0 và a 2 − 3 ≠ 0 ;
b) B = 2 a − 1 − 2 a 3 − 2 a a 2 + 1 . a a 2 − 2 a + 1 − 1 a 2 − 1 với a ≠ ± 1 .
cho các số a, b, c, d thỏa mãn 3a +2b -c -d=1; 2a+2b-c+2d=2; 4a- 2b- 3c+d=3; 8a+b-6c+d=4. tính giá trị của a+b+c+d
cho các số a,b,c,d thoả mãn 3a+2b-c-d=1; 2a+2b-c+2d=2 ; 4a-2b-3c+d=3 ; 8a+b-6c+d=4 thì giá trị của a+b+c+d là
Cho a,b,c,d thỏa mãn 3a+2b-c-d=1; 2a+2b-c-2d=2; 4a-2b-3c+d=3; 8a+b-6c+d=4 thì giá trị của a+b+c+d là bao nhiêu?
Bài 2 :Thực hiện phép tính
a/ (2x – 1)(x2 + 5 – 4) b/ -(5x – 4)(2x + 3)
c/ 7x(x – 4) – (7x + 3)(2x2 – x + 4).
Bài 3: Chứng minh rằng giá trị của biểu thức không phụ thuộc vào giá trị của biến.
a/ x(3x + 12) – (7x – 20) + x2(2x – 3) – x(2x2 + 5).
b/ 3(2x – 1) – 5(x – 3) + 6(3x – 4) – 19x.
Bài 4: Tìm x, biết.
a/ 3x + 2(5 – x) = 0 b/ 5x( x – 2000) – x + 2000 = 0 c/ 2x( x + 3 ) – x – 3 = 0
Bài 5: Tính giá trị các biểu thức sau:
a. P = 5x(x2 – 3) + x2(7 – 5x) – 7x2 với x = - 5
b. Q = x(x – y) + y(x – y) với x = 1,5, y = 10
Bài 6: Rút gọn biểu thức:
a. (6x + 1)2 + (6x – 1)2 – 2(1 + 6x)(6x – 1)
b. 3(22 + 1)(24 + 1)(28 + 1)(216 + 1)
II/ PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ
Bài 1: Phân tích đa thức thành nhân tử.
a/ 14x2y – 21xy2 + 28x2y2 b/ x(x + y) – 5x – 5y.
c/ 10x(x – y) – 8(y – x). d/ (3x + 1)2 – (x + 1)2
Câu1: Rút gọn biểu thức:
a) 2x^2(x^2+3x+1/2)
b) (x+1)(x-2)-(x+2)^2
c) (3x+1)^2 -9x(x+3)
Câu2: Chứng minh giá trị của các biểu thức sau không phụ thuộc vào giá trị của biến.
a) (x+2)^2 -x(x+4)+10
b) (x+3)(4x-1)-(2x+1)^2 -7x+3
Câu3: Tìm x, biết:
a) (x+2)^2 -x(x-1)=2
b) (2x+1)^2 -(x+1)(4x-3)= -3
Câu5: Cho hình thang cân ABCD hai đáy là AB và CD, gọi O là giao điểm hai đường chéo. C/m rằng: OA=OB; OC=OD.