a) ... = \(\dfrac{1-cos^2\alpha-sin^2\alpha}{sin\alpha\left(1+cos\alpha\right)}=\dfrac{1-1}{...}=0\)
b) ... = \(tan^2\alpha\left(1-sin^2\alpha\right)-sin^2\alpha\) = \(tan^2\alpha.cos^2\alpha-sin^2\alpha=sin^2\alpha-sin^2\alpha=0\)
a) ... = \(\dfrac{1-cos^2\alpha-sin^2\alpha}{sin\alpha\left(1+cos\alpha\right)}=\dfrac{1-1}{...}=0\)
b) ... = \(tan^2\alpha\left(1-sin^2\alpha\right)-sin^2\alpha\) = \(tan^2\alpha.cos^2\alpha-sin^2\alpha=sin^2\alpha-sin^2\alpha=0\)
Câu 50**: Cho góc nhọn α tuỳ ý giá trị biểu thức \(\dfrac{tan\alpha}{cot\alpha}+\dfrac{cot\alpha}{tan\alpha}-\dfrac{sin^2\alpha}{cos^2\alpha}\)bằng
A. \(tan^2\alpha\) ; B . \(cot^2\) α ; C . 0 ; D. 1 .
giải hộ mik vs
Chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào giá trị của góc nhọn \(\alpha\)
a) A = \(\frac{\cot^2\alpha-\cos^2\alpha}{\cot^2\alpha}-\frac{\sin\alpha.\cos\alpha}{\cot\alpha}\)
b) B = \(\left(\cos\alpha-\sin\alpha\right)^2+\left(\cos\alpha+\sin\alpha\right)^2+\cos^4\alpha-\sin^4\alpha-2\cos^2\alpha\)
c) C = \(\sin^6x+\cos^6x+3\sin^2x.\cos^2x\)
Cho \(\tan\alpha=\dfrac{3}{5}\). Tính giá trị của các biểu thức sau:
M=\(\dfrac{\sin\alpha+\cos\alpha}{\sin\alpha-\cos\alpha}\)
N=\(\dfrac{\sin\alpha\times\cos\alpha}{\sin^2\alpha-\cos^2\alpha}\)
CM các biểu thức sau ko phụ thuộc vào giá trị góc \(\alpha\)(0< \(\alpha\)< 90')
\(A=\sin^6\alpha+\cos^6\alpha+3\sin^2\alpha.\cos^2\alpha
\)
\(B=\left(\cos\alpha-\sin\alpha\right)^2+\left(\cos\alpha+\sin\alpha\right)^2\)
\(C=\frac{\left(\cos\alpha-\sin\alpha\right)^2-\left(\cos\alpha+\sin\alpha\right)^2}{\sin\alpha.\cos\alpha}\)
các nm làm ơn giải giúp mk nhé
mk camon nheii lắm ạ !!!! ^_^ ^_^
chứng minh các đẳng thức sau
a) \(\dfrac{1-cos\alpha}{sin\alpha}=\dfrac{sin\alpha}{1+cos\alpha}\)
b)\(\dfrac{cos\alpha}{1+sin\alpha}+tg\alpha=\dfrac{1}{cos\alpha}\)
2. Chứng minh rằng mỗi biểu thức sau ko phụ thuộc vào biến
A= \(\left(\sin\alpha+\cos\alpha\right)^2-2\sin\alpha.\cos\alpha-1\)
B= \(3\left(\sin^4\alpha+\cos^4\alpha\right)-2\left(\sin^6\alpha+\cos^6\alpha\right)\)
f) Cho α, Blà hai góc nhọn. Chứng minh rằng:
\(\cos^2\alpha-\cos^2\beta=\sin^2\alpha-\sin^2\beta=\dfrac{1}{1+\tan^2\alpha}-\dfrac{1}{1+tan^2\beta}\)
1. Chứng minh rằng: \(\frac{1-2\sin.\cos\alpha}{sin^2\alpha-\cos^2\alpha}=\frac{sin\alpha-\cos\alpha}{sin\alpha+\cos\alpha}\) (\(\alpha\ne45^o\))
2. Chứng minh: \(\cos^4\alpha+\sin^2\alpha.\cos^2\alpha+\sin^2\alpha\) không phụ thuộc vào x
Câu 50**: Cho góc nhọn tuỳ ý giá trị biểu thức \(\dfrac{tan\alpha}{cot\alpha}+\dfrac{cot\alpha}{tan\alpha}-\dfrac{sin^2\alpha}{cos^2\alpha}\) bằng
A. \(tan^2\alpha\) ; B . \(cot^2\alpha\) ; C . 0 ; D. 1 .
00< góc alpha < 900 . CMR : P=sin6alpha + cos6alpha + 3sin2alpha + cos2alpha không phụ vào giá trị góc alpha