Chứng minh : \(\frac{\left(5^4-5^3\right)}{125^4}=\frac{64}{125}\)
Tìm x
a)\(^{3^x}+^{3^{x+2}}=810\)
b)\(\left(x+\frac{2017}{2018}\right)^6=0\)
\(\frac{\left(5^4-5^3\right)}{125^4}-\frac{64}{125}\)
Chứng minh rằng:
a)\(12^8.9^{12}=18^{16}\)
b)\(\frac{\left(5^4-5^3\right)^3}{125^5}=\frac{64}{25^5}\)
c)\(\frac{9^3}{\left(3^4-3^3\right)^2}=\frac{1}{4}\)
Làm nhanh giúp mình nhá. Thanks. ^_^
Chứng minh rằng :
\(\frac{9^3}{\left(3^4-3^3\right)^2}=\frac{1}{4}\)
\(\frac{\left(5^4-5^3\right)}{125^4}=\frac{64}{125}\)
Làm nhanh thì 2 hoặc 3 thích nhé. Gấp lắm
Cái dấu sọc dọc xuống kế bên các phân số ko liên quan
cmr :\(\frac{\left(5^4-5^3\right)^3}{125^5}\) =\(\frac{64}{25^3}\)
\(\left(\frac{3}{5}-\frac{2}{3}x\right)^3=-\frac{64}{125}\)
so sánh:
\(\frac{\left(5^4-5^3\right)^3}{125^5}\) và\(\frac{64}{25^3}\)
a) \(\frac{\left(-1\right)^3}{15}+\left(-\frac{2}{3}\right):2\frac{2}{3}-\left|-\frac{5}{6}\right|\)
b) \(1\frac{5}{13}-0,\left(3\right)-\left(1\frac{4}{9}+\frac{18}{13}-\frac{1}{3}\right)\)
c) \(\left|97\frac{2}{3}-125\frac{3}{5}\right|+97\frac{2}{5}-125\frac{1}{3}\)
d) \(\frac{2\cdot6^9-2^5\cdot18^4}{2^2\cdot6^8}\)
Thuc hien phep tinh:
a/\(\frac{\frac{1}{9}-\frac{1}{7}-\frac{1}{11}}{\frac{4}{9}-\frac{4}{7}-\frac{4}{11}}\)+ \(\frac{0,6-\frac{3}{25}-\frac{3}{125}-\frac{3}{625}}{\frac{4}{5}-0,16-\frac{4}{125}-\frac{4}{625}}\)
b/ \(\frac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^5}-\frac{5^{10}.7^3-25^5.49^2}{\left(125.7\right)^3+5^9.14^3}\)