xét \(\frac{a}{n.\left(n+a\right)}=\frac{\left(n+a\right)-n}{n.\left(n+a\right)}=\frac{n+a}{n.\left(n+a\right)}-\frac{n}{n.\left(n+a\right)}=\frac{1}{n}-\frac{1}{n+a}\)
vậy ............................
xét \(\frac{a}{n.\left(n+a\right)}=\frac{\left(n+a\right)-n}{n.\left(n+a\right)}=\frac{n+a}{n.\left(n+a\right)}-\frac{n}{n.\left(n+a\right)}=\frac{1}{n}-\frac{1}{n+a}\)
vậy ............................
Chứng tỏ \(A=\frac{1}{n\times\left(n+1\right)\times\left(n+2\right)}=\frac{\frac{1}{ }}{2}\times\left(\frac{1}{n\times\left(n+1\right)}-\frac{1}{\left(n+1\right)\times\left(n+2\right)}\right)\)với n\(\in\)N*
hãy chứng minh rằng:
\(\frac{1}{n.\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}vớin\in Nsao\)
a. Chứng minh rằng
\(\frac{a}{n\left(n+a\right)}=\frac{1}{n}-\frac{1}{n+a}\left(n,a\in Nsao\right)\)
b. Áp dụng câu a tính:
A= \(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
B= \(\frac{5}{1.4}+\frac{5}{4.7}+..+\frac{5}{100.103}\)
C= \(\frac{1}{15}+\frac{1}{35}+...+\frac{1}{2499}\)
Bài 1 : So sánh 2 biểu thức A và B,biết rằng :\(A=\frac{N}{N+1}+\frac{N+1}{N+2}\)
\(B=\frac{2n+1}{2n+3}\left(n\in Nsao\right)\)
(Giai = 2 cách)
Chứng minh rằng :
a, \(\frac{1}{n}-\frac{1}{n+1}=\frac{1}{n\left(n+1\right)}\)
b, \(\frac{1}{n\left(n+q\right)}=\frac{1}{q}\left(\frac{1}{n}-\frac{1}{n+q}\right)\)
Cứu mình với!
a/ Cho \(\frac{a}{b}=\frac{60}{108}\)sao cho [a;b] = 180. Tìm phân số đó.
b/ Chứng minh \(\frac{1.3.5.....\left(2n-1\right)}{\left(n+1\right)\left(n+2\right)\left(n+3\right).....\left(2n\right)}=\frac{1}{2^n}\)(n \(\in\)N*)
Các bạn giải từng câu một cũng dc nhé
Chứng Minh Rằng :
\(\frac{a}{n\left(n+a\right)}=\frac{1}{n}-\frac{1}{n+a}\) \(\left(n,a\inℕ^∗\right)\)
Bài 1:Tìm x, biết
\(\frac{1}{2.3}+\frac{1}{4.6}+...+\frac{1}{\left(2x-2\right).2x}=\frac{11}{48}\left(x\in N,x\ge2\right)\)
Bài 2:Chứng tỏ rằng với mọi \(n\in Nsao\),ta có
\(\frac{1}{2.5}+\frac{1}{5.8}+...+\frac{1}{\left(3n-1\right).\left(3n+2\right)}\)
CMR : \(\frac{a}{n\left(n+a\right)}=\frac{1}{n}-\frac{1}{n+a}\left(n,a\in N^{\cdot}\right)\)