cho a,b,c >0 chứng minh rằng \(\sqrt{\frac{a+b}{c}}+\sqrt{\frac{b+c}{a}}+\sqrt{\frac{c+a}{b}}>=2\left(\sqrt{\frac{c}{a+b}}+\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{a+c}}\right)\)
Cho a, b và c là độ dài ba cạnh của một tam giác. Chứng minh rằng
\(\sqrt{\frac{a}{b+c-a}}+\sqrt{\frac{b}{c+a-b}}+\sqrt{\frac{c}{a+b-c}}\ge\sqrt{\frac{b+c-a}{a}}+\sqrt{\frac{c+a-b}{b}}+\sqrt{\frac{a+b-c}{c}}\)
cho a; b; c >0 chứng minh rằng \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{a+c}}+\sqrt{\frac{c}{a+b}}\)
Cho a,b,c > 0 . Chứng minh rằng
\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}}\)
Cho a,b,c>0 . chứng minh rằng:
\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}}\)
cho a,b,c>0. Chứng minh rằng:
\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}}\)
Cho các số thực dương a, b, c thỏa mãn a+b+c=1. Chứng minh rằng
\(\frac{a}{b}+\frac{a}{c}+\frac{c}{b}+\frac{c}{a}+\frac{b}{c}+\frac{b}{a}\ge2\sqrt{2}\left(\sqrt{\frac{1-a}{a}}+\sqrt{\frac{1-b}{b}}+\sqrt{\frac{1-c}{c}}\right)\)
Cho \(a,b,c>0\) Chứng minh rằng:
\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}}\)
cho a,b,c>0 thoải mãn a+b+c=1 chứng minh\(\frac{a}{b}+\frac{b}{a}+\frac{b}{c}+\frac{c}{b}+\frac{a}{c}+\frac{c}{a}+6\)>=\(2\sqrt{2}.\left(\sqrt{\frac{1-a}{a}}+\sqrt{\frac{1-b}{b}}+\sqrt{\frac{1-c}{c}}\right)\)