Bài 1:So sánh(bằng 2 cách):
\(A=\frac{10^{11}-1}{10^{12}-1}\)\(B=\frac{10^{10}+1}{10^{11}+1}\)
Bài 2:Chứng minh:
\(\frac{3}{5}< \frac{1}{31}+\frac{1}{32}+\frac{1}{33}+..........+\frac{1}{59}+\frac{1}{60}< \frac{4}{5}\)
Chứng minh rằng
\(A=\frac{3}{5}< \frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{60}< \frac{4}{5}\)
Chứng minh rằng :\(\frac{23}{34}<\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{70}<\frac{4}{3}\)
a) \(Cho\)\(S=\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+.....+\frac{1}{60}\)
\(Chứng\) \(minh\) \(\frac{3}{5}< S< \frac{4}{5}\)
b) \(Chứng\)\(minh\)\(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+.....+\frac{1}{100}>\frac{7}{10}\)
c) \(Chứng\)\(minh\)\(\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}\) không là số tự nhiên
d) \(Chứng\)\(minh\)\(\frac{1}{5}< D< \frac{1}{10}\) \(với\)\(D=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{99}{100}\)
Chứng minh rằng:
a) \(\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{100!}<1\)
b) \(\frac{9}{10!}+\frac{9}{11!}+\frac{9}{12!}+...+\frac{9}{1000!}<\frac{1}{9!}\)
1,Chứng minh rằng
\(\frac{9}{10!}+\frac{9}{11!}+\frac{9}{12!}+...+\frac{9}{1000!}< \frac{1}{9!}\)
Chứng minh rằng :
B=\(9\left(\frac{1}{10!}+\frac{1}{11!}+\frac{1}{12!}+...+\frac{1}{2020!}\right)< \frac{1}{9!}\)
Cho A =\(\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{59}+\frac{1}{60}\) Chứng minh rằng A<\(\frac{4}{5}\)
Chứng minh rằng:
a) \(\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{100!}<1\)
b) \(\frac{9}{10!}+\frac{9}{11!}+\frac{9}{12!}+...+\frac{9}{1000!}<\frac{1}{9!}\)