Chứng minh rằng : \(\frac{1}{7^2}-\frac{1}{7^4}+...+\frac{1}{7^{4n-2}}-\frac{1}{7^{4n}}+...+\frac{1}{7^{98}}-\frac{1}{7^{100}}< \frac{1}{50}\)
Chứng minh:
\(\frac{1}{7^2}-\frac{1}{7^4}+...+\frac{1}{4n-2}+\frac{1}{4n}+...+\frac{1}{98}+\frac{1}{100}<\frac{1}{50}\)
CMR : \(\frac{1}{7^2}-\frac{1}{7^4}+...+\frac{1}{7^{4n-2}}-\frac{1}{7^n}+...+\frac{1}{7^{98}}+\frac{1}{7^{100}}< \frac{1}{50}\)
Giải hộ mình nhé
Chứng minh rằng :
\(\frac{1}{7^2}\)- \(\frac{1}{7^4}\)+........+ \(\frac{1}{7^{4n-2}}\)- \(\frac{1}{7^{4n}}\) +.......+\(\frac{1}{7^{98}}\)- \(\frac{1}{7^{100}}\)< \(\frac{1}{50}\)
chứng minh rằng : \(\frac{1}{7^2}-\frac{1}{7^4}+\frac{1}{7^6}-...+\frac{1}{7^{98}}-\frac{1}{7^{100}}< \frac{1}{50}\)
cho \(A=\frac{1}{7^2}-\frac{1}{7^4}+....+\frac{1}{7^{4n-2}}-\frac{1}{7^{4n}}+....+\)\(\frac{1}{7^{100}}\)
Chứng minh rằng: \(\frac{1}{7^2}-\frac{1}{7^4}+\frac{1}{7^6}-.....+\frac{1}{7^{98}}-\frac{1}{7^{100}}\)\(< \frac{1}{50}\)
chứng minh rằng \(\frac{1}{7^2}-\frac{1}{7^4}+\frac{1}{7^6}-\frac{1}{7^8}+...+\frac{1}{7^{98}}-\frac{1}{7^{100}}<\frac{1}{50}\)
ai nhanh minh k cho
Chứng minh rằng: \(\frac{1}{7^2}-\frac{1}{7^4}+\frac{1}{7^6}-...-\frac{1}{7^{96}}+\frac{1}{7^{98}}-\frac{1}{7^{100}}<\frac{1}{50}\)
Ai trả lời nhanh và đúng nhất tôi sẽ tích cho