chứng minh cac hằng đẳng thức sau
1)a^2+b^2=(a+b)^2 - 2ab
2)a^4+b^4=(a^2+b^2)^2 - 2a^2b^2
3)a^6+b^6=(a^2+b^2)[(a^2+b^2)^2 - 3a^2b^2]
4)a^6 -b^6=(a^2 -b^2)[(a^2+b^2)^2 -a^2b^2]
Giup mik voi mai mik phai nop rui huhu
Cho a=b=c. Chứng minh các đẳng thức: a)a^4+b^4+c^4=2(a^2b^2+b^2c^2+c^2a^2)=2(ab+bc+ca)^2=(a^2+b^2+c^2)^2/2
Cho a >b . Chứng minh : a)4a – 3 > 4b – 3; b) 1 – 2a < 1- 2b ; c) 5( a+ 3) - 4 > 5( b + 3) – 4; d)5 – 2a < 5 – 2b e) – 2 (1 – a) – 6 > -2 (1 – b ) – 6
1. CMR: Nếu a,b,c là độ dài 3 cạnh tam giác thì:
\(2a^2b^2+2b^2c^2+2c^2a^2-a^4-b^4-c^4>0\)
2. PTĐT thành nhân tử
a) \(a^6+a^4+a^2b^2+b^4+b^6\)
b) \(a^3+3ab+b^3-1\)
c) \(a^2b^2\left(b-a\right)+b^2c^2\left(c-b\right)-c^2a^2\left(c-a\right)\)
d) \(\left(x^2+y^2\right)^3+\left(z^2-x^2\right)^3-\left(y^2+z^2\right)^3\)
chứng minh các đẳng tức sau:
a,(a-1). (a-2)+(a-3). (a-4)-(2a^2+5a-34)=24-7a
b,(a-b).(a^2+ab+b^2)-(a+b).(a^2-ab+b^2)= -2b^3
chứng minh các đẳng tức sau:
a,(a-1). (a-2)+(a-3). (a-4)-(2a^2+5a-34)=24-7a
b,(a-b).(a^2+ab+b^2)-(a+b).(a^2-ab+b^2)= -2b^3
a) Chứng minh hằng đẳng thức sau :
\(\frac{1}{a-2b}+\frac{6b}{4b^2-a^2}-\frac{2}{a+2b}=-\frac{1}{2a}\left(\frac{a^2+4b^2}{a^2-4b^2}+1\right)\)
b) Chứng minh hằng đẳng thức Ơle sau :
\(a^3+b^3+\left(\frac{b\left(2a^3+b^3\right)}{a^3-b^3}\right)^3=\left(\frac{a\left(a^3+2b^3\right)}{a^3-b^3}\right)^3\)
Chứng minh đẳng thức:
\(\left(\frac{2a+2b-c}{3}\right)^2+\left(\frac{2b+2c-a}{3}\right)^2+\left(\frac{2c+2a-b}{3}\right)^2=a^2+b^2+c^2\)
giai giup minh voi nhe!. cho a+b+c=0. chứng minh
a) a^4+b^4+c^4=(a^2+b^2+c^2)^2/2
b) a^4+b^4+c^4=2(a^2b^2+b^2c^2+c^2a^2)