Sửa đề \(\left(x+y+z\right)^2-x^2-y^2-z^2=2\left(xy+yz+zx\right)\)
Ta có : \(\left(x+y+z\right)^2=x^2+y^2+z^2+2xy+2yz+2zx\)(hằng đẳng thức cho 3 số )
\(\Rightarrow\left(x+y+z\right)^2-x^2-y^2-z^2=2\left(xy+yz+zx\right)\left(đpcm\right)\)
Vậy
Sửa đề \(\left(x+y+z\right)^2-x^2-y^2-z^2=2\left(xy+yz+zx\right)\)
Ta có : \(\left(x+y+z\right)^2=x^2+y^2+z^2+2xy+2yz+2zx\)(hằng đẳng thức cho 3 số )
\(\Rightarrow\left(x+y+z\right)^2-x^2-y^2-z^2=2\left(xy+yz+zx\right)\left(đpcm\right)\)
Vậy
phân tích a)(x-y)3+(y-z)3+(z-x)3
b)x.(y2-z2)+y.(z2-x2)+z.(x2-y2)
c)xy.(x-y)-xz.(x+z)-yz.(zx-y+z)
d)x.(y+z)2+y.(z-x)2+z.(x+y)2-4xyz
Chứng minh đẳng thức :
(x+y+z)^2-x^2-y^2-z^2=2(xy+yz+zx)
Chứng minh đẳng thức :
\(\left(x+y+z\right)^2-x^2-y^2-z^2=2\left(xy+yz+zx\right)\)
Chứng minh đẳng thức sau: \(x^3+y^3+z^3=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)+3xyz\)
Cho x, y, z là các số thực dương sao cho xy + yz + zx = 27. Chứng minh rằng x+y+z ≥ \(\sqrt{3xyz}\),đẳng thức xảy ra khi nào?
Chứng minh hằng đẳng thức:(x+y+z)2 - x2 - y2 - z2=2(xy+yz+zx)
GIÚP VS!!!!!!!!!!!!!
\(\left(x+y+z\right)^2-x^2-y^2-z^2=2\left(xy+yz+zx\right)\)
Chứng minh đẳng thức trên
x2-yz+y2-zx+z2-xy
chứng minh bất đẳng thức sau (x +y +z)2>=3.(xy + yz + zx)