(–a – b)2 = [(– 1).(a + b)]2 = (–1)2(a + b)2 = 1.(a + b)2 = (a + b)2 (đpcm)
(–a – b)2 = [(– 1).(a + b)]2 = (–1)2(a + b)2 = 1.(a + b)2 = (a + b)2 (đpcm)
Chứng minh các đẳng thức sau:
a) x 2 + y 2 = ( x + y ) 2 – 2 xy ;
b) ( a + b ) 2 – (a – b)(a + b) = 2b(a + b).
Chứng minh các đẳng thức sau
a) (a+b)^2 + (a-b)^2 = 2( a^2+b^2)
chứng minh các hằng đẳng thức sau:(a-b)^3=-(b-a)^3
(-a-b)^2=(a+b)^2
Chứng minh các đẳng thức sau:
a) ( a + b ) 2 − ( a − b ) 2 4 = ab ;
b) 2 ( x 2 + y 2 ) = ( x + y ) 2 + ( x – y ) 2 .
chứng minh bất đẳng thức sau:
a^2+b^2+c^2>=a(b+c)
Chứng minh các đẳng thức sau
a)(a-b)2=(a+b)2-4ab
b)(x+y)2+(x-y)2=2(x2+y2)
Chứng minh các đẳng thức sau:
(a-b)^3=-(b-a)^3
(-a-b)^2=(a+b)^2
Chứng minh đẳng thức sau:
(-a - b)2 = (a + b)2
Chứng minh các hằng đẳng thức sau:
a) (a - b)^3 = - (b - a)^3
b) (-a - b)^2 = (a + b)^2