Có VT = a2 + 2ab + b2 + a2 - 2ab + b2
= 2a2 + 2b2 = 2(a2 + b2) (= VP)
Vậy (a + b)2 + (a - b)2 = 2(a2 + b2)
Có VT = a2 + 2ab + b2 + a2 - 2ab + b2
= 2a2 + 2b2 = 2(a2 + b2) (= VP)
Vậy (a + b)2 + (a - b)2 = 2(a2 + b2)
Chung minh dang thuc (a + b)^2 = (- a - b)^2 Mn giup e
Giup minh voi
Chung minh cac dang thuc sau :
a) ( a - b )^3 = -( b - a )^3
b) ( -a - b )^2 = ( a + b )^2
Chung minh dang thuc sau:
a3-b3+ab(a-b)=(a-b)(a+b)2
chung minh dang thuc
\(\left(a-b\right)^2=\left(a+b\right)^2-4ab\)
Chung minh cac dang thuc sau
a,( a - b )3 = - ( b - a )3
b,( - a - b )2 = ( a + b )2
chung minh hang dang thuc
(a+b+c)2+a2+b2+c2=(a+b)2+(b+c)2+(c+a)2
Chứng minh rằng: (a + b)( a 2 – ab + b 2 ) + (a – b)( a 2 + ab + b 2 ) = 2 a 3
cho a,b,c thuoc R chung minh rang a2+b2_> 2ab (1) áp dung va chung minh bat dang thuc sau
(a2+1)(b2+1)(c2+1) _> 8abc
cho ab+bc+ca=2017.Chung minh dang thuc sau:
(a2+2017)(b2+2017)(c2+2017)=(a+b)2(b+c)2(c+a)2