\(-a\left(b-c\right)-b\left(c-a\right)=-c\left(b-a\right)\)
\(\Leftrightarrow-ab+ac-bc+ab=-cb+ac\)
\(\Leftrightarrow ac-bc=ac-cb\)
\(\Leftrightarrow0=0\)(luôn đúng)
Vậy \(-a\left(b-c\right)-b\left(c-a\right)=-c\left(b-a\right)\)
Ta có -a(b-c)-b(c-a) = -ab + ac - bc + ab
= ( -ab + ab ) + ( ac - bc )
= 0+ ac - bc = ac - bc = -bc + ac = -c( b - a ) ( đpcm )