Cho đa thức f(x)=x3+ax2−bx+2. 1. Cho a=− 1/ 2 và b=4. Chứng minh rằng x=1/ 2 là nghiệm của đa thức. 2. Biết đa thức đã cho nhận x=1 và x=−2 là nghiệm. Tìm giá trị của a và b. 3. Với đa thức tìm được ở câu trên, hãy tìm giá trị của x thỏa mãn f(x)=x+2.
Cho hai đa thức P(x)=x3-3x-x2+1 và Q(x)=2x2-x3+x-5
a. tính P(x)+Q(x); P(x)-Q(x)
b. Tìm nghiệm của đa thức P(x)+Q(x)
Cho 2 đa thức A=1+x+x2+x3+...+x2012
B=1-x+x2-x3+...-x2011
Tính giá trị của đa thức A tại x=1
Tìm đa thức C sao cho C=A+B
Bài 1: Cho đa thức f(x) thoả mãn điều kiện: x.f(x-2)=(x-4).f(x)
Chứng minh rằng đa thức f(x) có ít nhất hai nghiệm
Chứng minh rằng đa thức: x.f(x+1)-(x+2).f(x)=0 có ít nhất hai nghiệm
Cho các đa thức
P(x) = 5-x3+3x2-x4-x6-3x3
Q(x)= x+2x5-x4-2x3+x3-1
a. Thu gọn và sắp xếp các hạng tử của mỗi đa thức sau theo lũy thừa giảm dần của biến
b. Tính P(x)+ Q(x); H(x)= P(x) - Q(x) và giá trị H(-1)
Cho hàm số y = \(\dfrac{-2}{3}x\) ; đa thức f(x) thỏa mãn điều kiện:
\(\left(x-1\right).f\left(x\right)=\left(x+4\right).f\left(x+8\right)\)với x\(\in R\).
Chứng minh đa thức f(x) có ít nhất 1 nghiệm là số nguyên tố
chứng minh đa thức f(x) cố ít nhất 2 nghiệm nếu
xf(x-2)=(x-4).f(x)
cho đa thức f(x) thỏa mãn
x . f(x-2) =(x-4).f(x)
chứng minh đa thức f(x) có ít nhất 2 nghiệm
nhanh lên mai mình nộp rồi