a)Giải: Gọi hai số lẻ liên tiếp là 2n + 1 và 2n + 3 (n \(\in\) N).
Ta đặt ƯCLN (2n + 1, 2n + 3) = d.
Suy ra 2n + 1chia hết cho d; 2n + 3 chia hết cho d.
Vậy (2n + 3) – ( 2n + 1) chia hết cho d
Hay 2 chia hết cho d, suy ra d \(\in\) { 1 ; 2 }. Nhưng d \(\ne\) 2 vì d là ước của các số lẻ. Vậy d = 1, điều đó chứng tỏ 2n + 1 và 2n + 3 là hai số nguyên tố cùng nhau.
a) gọi hai số lẻ liên tiếp là a ;a+2
gọi UCLN(a;a+2) là d ta có:
a chia hết cho d
a+2 chia hết cho d
=>(a+2)-a chia hết cho d
=>2 chia hết cho d
=>d=1;2
nếu d=2 thì a ko chia hết cho bởi a lẻ
=>d=1
=>UCLN(...)=1
=>ntcn
b)gọi UCLN(2n+5;3n+7) là d
ta có :
2n+5 chia hết cho d=>3(2n+5) chia hết cho d =>6n+15 chia hết cho d\
3n+7 chia hết cho d =>2(3n+7) chia hết cho d=>6n+14 chia hết cho d
=>(6n+15)-(6n+14) chia hết cho d
=>1 chia hết cho d
=>d=1
=>UCLN(...)=1
=>ntcn
b) giải: Gọi d là UC(2n+5;3n+7), ta có:
3(2n+5)=6n+15 chia hết cho d
2(3n+7)=6n+14 chia hết cho d
=>3(2n+5)-2(3n+7) chia hết cho d =>(6n+15)-(6n+14)=1 chia hết cho d, => d=1
Vậy 2n+5 và 3n+7 là 2 số nguyên tố cùng nhau