Violympic toán 8

Đinh Cẩm Tú

Chứng minh các bất đẳng thức:

a) (\(\dfrac{a+b}{2}\))2 ≥ \(\dfrac{a^2+b^2}{2}\)

b) (a10 + b10)(a2 + b2) ≥ (a8 + b8)(a4 + b4)

Lê Thị Thục Hiền
25 tháng 5 2021 lúc 8:42

a)Xét \(\left(\dfrac{a+b}{2}\right)^2-\dfrac{a^2+b^2}{2}=\)\(\dfrac{a^2+2ab+b^2-2\left(a^2+b^2\right)}{4}\)\(=\dfrac{-a^2+2ab-b^2}{4}\)\(=\dfrac{-\left(a-b\right)^2}{4}\le0\forall a;b\)

\(\Rightarrow\left(\dfrac{a+b}{2}\right)^2\le\dfrac{a^2+b^2}{2}\) (bạn ghi sai đề?) 

Dấu = xảy ra <=> a=b

b) \(\left(a^{10}+b^{10}\right)\left(a^2+b^2\right)-\left(a^8+b^8\right)\left(a^4+b^4\right)\)

\(=a^{12}+a^{10}b^2+a^2b^{10}+b^{12}-\left(a^{12}+a^8b^4+a^4b^8+b^{12}\right)\)

\(=a^2b^2\left(a^8+b^8-a^6b^2-a^2b^6\right)\)

\(=a^2b^2\left(a^2-b^2\right)\left(a^6-b^6\right)=a^2b^2\left(a^2-b^2\right)^2\left(a^4+a^2b^2+b^4\right)\ge0\) với mọi a,b

=> \(\left(a^{10}+b^{10}\right)\left(a^2+b^2\right)\ge\left(a^8+b^8\right)\left(a^4+b^4\right)\)

Dấu = xảy ra <=>a=b

 

Bình luận (0)

Các câu hỏi tương tự
Đinh Cẩm Tú
Xem chi tiết
Đinh Cẩm Tú
Xem chi tiết
Thùy Linh
Xem chi tiết
Long Lê
Xem chi tiết
Mai Diễm My
Xem chi tiết
Bướm Đêm Sát Thủ
Xem chi tiết
Nguyễn Minh Châu
Xem chi tiết
Big City Boy
Xem chi tiết
Maxx
Xem chi tiết