Violympic toán 8

Mai Diễm My

chứng minh bất đẳng thức

\(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}\ge\dfrac{3}{2}\)với a ≥ b ≥ c > 0

Nguyễn Thị Mai Anh
3 tháng 5 2018 lúc 21:51

bạn ơi, bài này sai đề rồi

Bình luận (0)
Nguyễn Thị Ngọc Thơ
25 tháng 7 2018 lúc 14:42

Ta có: BĐT\(\Leftrightarrow\dfrac{a}{a+b}-\dfrac{1}{2}+\dfrac{b}{b+c}-\dfrac{1}{2}+\dfrac{c}{c+a}-\dfrac{1}{2}\ge0\)

\(\Leftrightarrow\dfrac{2a-\left(a+b\right)}{2\left(a+b\right)}+\dfrac{2b-\left(b+c\right)}{2\left(b+c\right)}+\dfrac{2c-\left(c+a\right)}{2\left(c+a\right)}\ge0\)

\(\Leftrightarrow\dfrac{a-b}{2\left(a+b\right)}+\dfrac{b-c}{2\left(b+c\right)}+\dfrac{c-a}{2\left(c+a\right)}\ge0\)

\(\Leftrightarrow\dfrac{a-b}{2\left(a+b\right)}+\dfrac{b-a+a-c}{2\left(b+c\right)}+\dfrac{c-a}{2\left(c+a\right)}\ge0\)

\(\Leftrightarrow\dfrac{a-b}{2}\left(\dfrac{1}{a+b}-\dfrac{1}{b+c}\right)+\dfrac{a-c}{2}\left(\dfrac{1}{b+c}-\dfrac{1}{c+a}\right)\ge0\)

\(\Leftrightarrow\dfrac{a-b}{2}\left(\dfrac{c-a}{\left(a+b\right)\left(b+c\right)}+\dfrac{a-c}{\left(b+c\right)\left(c+a\right)}\right)\ge0\)

\(\Leftrightarrow\dfrac{\left(a-b\right)\left(a-c\right)\left(b-c\right)}{2\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\) (đúng)

Vậy BĐT luôn đúng với \(a\ge b\ge c>0\)

Bình luận (0)

Các câu hỏi tương tự
Bướm Đêm Sát Thủ
Xem chi tiết
Thùy Linh
Xem chi tiết
Đổng Ngạc Lương Tịch
Xem chi tiết
Big City Boy
Xem chi tiết
Long Lê
Xem chi tiết
Phạm Đức Minh
Xem chi tiết
ĐỖ THỊ THANH HẬU
Xem chi tiết
Bong Bóng Công Chúa
Xem chi tiết
Thùy Linh
Xem chi tiết