a, b, c > 0
Áp dụng bất đẳng thức AM - GM (Cauchy):
\(\dfrac{a}{b^2}+\dfrac{1}{a}\ge2\sqrt{\dfrac{a}{b^2}.\dfrac{1}{a}}=2\sqrt{\dfrac{1}{b^2}}=\dfrac{2}{b}\)
\(\dfrac{b}{c^2}+\dfrac{1}{b}\ge2\sqrt{\dfrac{b}{c^2}.\dfrac{1}{b}}=2\sqrt{\dfrac{1}{c^2}}=\dfrac{2}{c}\)
\(\dfrac{c}{a^2}+\dfrac{1}{c}\ge2\sqrt{\dfrac{c}{a^2}.\dfrac{1}{c}}=2\sqrt{\dfrac{1}{a^2}}=\dfrac{2}{a}\)
Vậy ta có :
\(\dfrac{a}{b^2}+\dfrac{b}{c^2}+\dfrac{c}{a^2}+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{2}{b}+\dfrac{2}{c}+\dfrac{2}{a}\)
\(\Leftrightarrow\dfrac{a}{b^2}+\dfrac{b}{c^2}+\dfrac{c}{a^2}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\) (đpcm)
Cách dùng hằng đẳng thức:
\(\dfrac{a}{b^2}+\dfrac{b}{c^2}+\dfrac{c}{a^2}-\dfrac{1}{a}-\dfrac{1}{b}-\dfrac{1}{c}\)
\(=\left(\dfrac{a}{b^2}-\dfrac{2}{b}+\dfrac{1}{a}\right)+\left(\dfrac{b}{c^2}-\dfrac{2}{c}+\dfrac{1}{b}\right)+\left(\dfrac{c}{a^2}-\dfrac{2}{a}+\dfrac{1}{c}\right)\)
\(=\left(\dfrac{\sqrt{a}}{b}-\dfrac{1}{\sqrt{a}}\right)^2+\left(\dfrac{\sqrt{b}}{c}-\dfrac{1}{\sqrt{b}}\right)^2+\left(\dfrac{\sqrt{c}}{a}-\dfrac{1}{\sqrt{c}}\right)^2\ge0\)
Áp dụng BĐT côsi ta có:
a² + bc ≥ 2.a√(bc)
<=> 1/(a² + bc) ≤ 1/(2a√(bc)) -------------(1)
tương tự vậy:
1/(b² + ac) ≤ 1/(2b√(ac)) -------------------(2)
1/(c² + ab) ≤ 1/(2c√(ab)) -------------------(3)
lấy (1) + (2) + (3)
=> 1/(a² + bc) + 1/(b² + ac) + 1/(c² + ab) ≤ 1/(2a√(bc)) + 1/(2b√(ac)) + 1/(2c√(ab))
<=>1/(a² + bc) + 1/(b² + ac) + 1/(c² + ab) ≤ √(bc)/2abc + √(ac)/2abc + √(ab)/2abc
<=>1/(a² + bc) + 1/(b² + ac) + 1/(c² + ab) ≤ [√(bc) + √(ac) + √(ab) ]/2abc (!)
Ta chứng minh bổ đề:
√(ab) + √(bc) + √(ac) ≤ a + b + c
thật vậy, áp dụng BĐT côsi ta được:
a + b ≥ 2√(ab) --- (*)
a + c ≥ 2√(ac) --- (**)
b + c ≥ 2√(bc) --- (***)
lấy (*) + (**) + (***) => 2(a + b + c) ≥ 2.[ √(bc) + √(ac) + √(ab) ]
<=> √(bc) + √(ac) + √(ab) ≤ a + b + c (@)
từ (!) và (@)
=> 1/(a² + bc) + 1/(b² + ac) + 1/(c² + ab) ≤ (a + b + c)/2abc ( Đpcm )