\(A^3=\left(\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}-7}\right)^3\)
\(=\left(5\sqrt{2}+7\right)-\left(5\sqrt{2}-7\right)-3\sqrt[3]{5\sqrt{2}+7}.\sqrt[3]{5\sqrt{2}-7}\left(\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}+7}\right)\)
\(=14-3A\)
=> \(A^3+3A-14=0\)
<=> \(\left(A^3-8\right)+\left(3A-6\right)=0\)
<=> \(\left(A-2\right)\left(A^2+2A+7\right)=0\)
<=> A = 2 vì A^2 + 2A + 7 = (A+ 1) ^2 + 6 > 0
Do đó A là 1 số nguyên.