Bài 17: Cho a1; a2; a3….. a5 > 0 và có tổng bằng 1 Chứng minh:\(\left(\frac{1}{a_5}-1\right)\left(\frac{1}{a_4}-1\right)\left(\frac{1}{a_3}-1\right)\left(\frac{1}{a_2}-1\right)\left(\frac{1}{a_1}-1\right)\ge1024\)
Cho 25 số tự nhiên \(a_1,a_2,a_3,...,a_{25}\) thỏa điều kiện \(\dfrac{1}{\sqrt{a_1}}+\dfrac{1}{\sqrt{a_2}}+\dfrac{1}{\sqrt{a_3}}+...+\dfrac{1}{\sqrt{a_{25}}}=9\). Chứng minh rằng trong 25 số tự nhiên đó tồn tại 2 số bằng nhau.
Cho 2016 số nguyên dương \(a_1;a_2;a_3;....;a_{2016}\) thỏa mãn:
\(\dfrac{1}{a_1}+\dfrac{1}{a_2}+\dfrac{1}{a_3}+...+\dfrac{1}{a_{2016}}=300\). Chứng minh rằng tồn tại ít nhất 2 số trong 2016 số đã cho bằng nhau
Cho \(\left(a_1\right)^2+\left(2a_2\right)^2+\left(3a_3\right)^2+.....+\left(2013a_{2013}\right)^2+\left(2014a_{2014}\right)^2=2725088015\)
tính giá trị của biểu thức
\(P=a_1+a_2+a_3+a_4+.....+a_{2013}+a_{2014}\)
Biết \(a_1;a_2;a_3;a_4;....;a_{2013};a_{2014}\)là các số nguyên khác \(0\)
(toán máy tính cầm tay)
Chứng minh rằng với các số thực dương \(a_1,a_2,a_3,...a_n\)thì:
\(\sqrt[n]{\frac{a_1^2+a_2^2+a_3^2+...+a_n^2}{n}}\)\(\ge\frac{a_1+a_2+a_3+...+a_n}{n}\)\(\ge\sqrt[n]{a_1a_2a_3...a_n}\)\(\ge\frac{n}{\frac{1}{a_1}+\frac{1}{a_2}+\frac{1}{a_3}+...+\frac{1}{a_n}}\)
Giúp em với ạ.
Cho 361 số tự nhiên a1, a2, a3, a361 thoả mãn điều kiện:
\(\dfrac{1}{\sqrt{a_1}}\) + \(\dfrac{1}{\sqrt{a_2}}\) + \(\dfrac{1}{\sqrt{a_3}}\) + ... + \(\dfrac{1}{\sqrt{a_{361}}}\) = 37
Chứng minh rằng trong 361 số tự nhiên đó, tồn tại ít nhất 2 số bằng nhau
Cho các số nguyên \(a_1,a_2,a_3,...,a_n\). Đặt \(S=a_1^3+a_2^3+a_3^3+...+a_n^3\) và \(P=a_1+a_2+a_3+...+a_n\). Chứng minh rằng \(S⋮6\) khi \(P⋮6\)
Cho \(a_1\le a_2\le....\le a_n\) thỏa mãn \(\hept{\begin{cases}a_1+a_2+a_3+...+a_n=0\\\left|a_1\right|+\left|a_2\right|+\left|a_3\right|+...+\left|a_n\right|=1\end{cases}}\)
CMR: \(a_n-a_1\ge\frac{2}{n}\)
Cho \(a_1,a_2,a_3,...,a_n\left(n\ge2\right)\) là các số thực thỏa mãn \(a_1a_2+a_2a_3+...+a_{n-1}a=1\)
Chứng minh rằng : \(a_1^2+a_2^2+a_3^2+...+a_n^2\ge\frac{1}{\cos\frac{\pi}{n+1}}\)