B = 3 + 3 2 + 3 3 + 3 4 + ... + 3 2010
B = ( 3 + 3 2 ) + ( 3 3 + 3 4 ) + ... + ( 3 2009 + 3 2010 )
B = ( 3 + 3 2 ) + ( 3 + 3 2 ) . 3 2 + ... + ( 3 + 3 2 ) . 3 2008
B = 12 + 12 . 3 2 + ... + 12 . 3 2008
B = 12 . ( 1 + 3 2 + ... + 3 2008 )
Vì 12 chia hết cho 4
=> 12 . ( 1 + 3 2 + ... + 3 2008 ) chia hết cho 4
=> B chia hết cho 4
B = 3 + 3 2 + 3 3 + 3 4 + ... + 3 2010
B = ( 3 + 3 2 + 3 3 ) + ( 3 4 + 3 5 + 3 6 ) + ... + ( 3 2008 + 3 2009 + 3 2010 )
B = ( 3 + 3 2 + 3 3 ) + ( 3 + 3 2 + 3 3 ) . 3 3 + ... + ( 3 + 3 2 + 3 3 ) . 3 2007
B = 39 + 39 . 3 3 + ... + 39 . 3 2007
B = 39 ( 1 + 3 3 + .... + 3 2007 )
Vì 39 chia hết cho 13
=> 39 ( 1 + 3 3 + .... + 3 2007 ) chia hết cho 13
=> B chia hết cho 13
[3\(^1\)+3\(^2\)] +[3\(^3\)+3\(^4\)]+.....+[3\(^{2009}\)+3\(^{2010}\)]
=3\(^1\)x[1+3] + \(3^3\)x [1+3] + ......+\(3^{2009}\)x[1+2]
=3x4+\(3^3\)x4 +\(3^{2009}\)x4
=4x[3+3\(^3\)+\(3^{2009}\)]
vì 4 chia hết cho 4
suy ra b chia hết cho 4