đặt cái biểu thức cần chứng minh là A
Áp dụng cái bất đẳng thức mình đã viết ở dưới ta có
1/b+c + 1/a+c +1/a+b>= 9/2(a+b+c)
nhân a+b+c vào 2 vế nha
=> a/b+c + b/a+c +c/a+b >=3/2
sử dụng bất đẳng thức này mà làm nè bạn:
1/x+1/y+1/z>=9/x+y+z
đặt cái biểu thức cần chứng minh là A
Áp dụng cái bất đẳng thức mình đã viết ở dưới ta có
1/b+c + 1/a+c +1/a+b>= 9/2(a+b+c)
nhân a+b+c vào 2 vế nha
=> a/b+c + b/a+c +c/a+b >=3/2
sử dụng bất đẳng thức này mà làm nè bạn:
1/x+1/y+1/z>=9/x+y+z
1) Cho a, b, c > 0. Chứng minh: \(\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)^2\ge\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
2) Cho \(a,b,c\in R\).
a) Chứng minh: \(\left(a^2+3\right)\left(b^2+3\right)\left(c^2+3\right)\ge4\left(a+b+c+1\right)^2\)
b) Chứng minh: \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge\frac{5}{16}\left(a+b+c+1\right)^2\)
3) Cho \(a,b,c\in R\)Chứng minh: \(\frac{a^3}{b^2}+\frac{b^3}{c^2}+\frac{c^3}{a^2}\ge\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\)
1)chứng minh rằng nếu a+b+c=1 thì a^4 +c^4 +b^4 =abc
2) với a,b,c dương chứng minh rằng 2căna +2cănb+2cănc +a^2+b^2+c^2 >= 3(a+b+c)
chú ý khánh linh nhớ mai đãi kem nha viết mỏi tay quá cơ
TỚ VIẾT ĐỀ CHO BẠN TỚ MONG CÁC BẠN ĐỪNG ĐỂ Ý NHA
1) Cho a,b,c thộc đoạn 0,1 thỏa mãn a+b+c=2. chứng minh rằng a^2 +b^2+c^2<=2
2) cho ................................ chứng minh rằng a(1-b)+b(1-c)+c(1-a)<=1
3)...................................................................... a+b^2+c^3-ab-bc-ca<=1
4) cho a,b,c là độ dài 3 cạnh ta giác và a+b+c=2. chứng minh rằng a^2+b^2+c^2<2
5)...........................................................a+b+c=1. chứng minh rằng a^2+b^2+c^2 <1/2
cho a,b,c,d >0 và 2(a+b+c+d)>-abcd chứng minh a^2+b^2+c^2+d^2>=abcd
bài 2 cho a,b,c>0 và a+b+c>=abc chứng minh có ít nhất 2 trong 3 bdt sau là đúng 2/a +3/b+ 6/c>=6 2/b + 3/c+ 6/a>=6 2/c + 3/a +6/b >=6
1. Cho \(a,b>0\). Chứng minh \(\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{a}}\ge\sqrt{a}+\sqrt{b}\)
2. Cho \(a,b,c\in\left[0;1\right].\)Chứng minh \(a\left(1-b\right)+b\left(1-c\right)+c\left(1-a\right)\le1\)
3. Cho \(a,b,c>0\). Chứng minh \(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\ge\frac{a+b+c}{3}\)
4. Cho \(a,b,c>0\)thỏa mãn \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge2\). Chứng minh \(abc\le\frac{1}{8}\)
5. Cho \(x,y\ge0\)thỏa mãn \(x^3+y^3=2\). Chứng minh \(x^2+y^2\le2\)
6. Cho \(a,b,c\ne0\). Chứng minh \(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\le\frac{a}{c}+\frac{b}{a}+\frac{c}{b}\)
7. Cho \(a,b,c\)là độ dài ba cạnh của tam giác. Chứng minh \(a^2b+b^2c+c^2a+a^2c+b^2a-a^3-b^3-c^3-2abc>0\)
8. Cho \(a,b,c>0\). Chứng minh \(\frac{5b^3-a^3}{ab+3b^2}+\frac{5c^3-b^3}{bc+3c^2}+\frac{5a^3-c^3}{ca+3a^2}\le a+b+c\)
cho abc là độ dài 3 cạnh tam giác chứng minh a(b-c)^2 + b(c-a)^2 + c(a+b)^2 > a^3 + b^3 + c^3
1. Cho a,b,c thuộc N* thỏa mãn a^2+b^2+c^2 chia hết a+b+c. Chứng minh rằng tồn tại vô hạn n sao cho a^n+b^n+c^n chia hết a+b+c
2. Cho x,y,z thuộc R thỏa x^2+2y^2+5z^2=1. Tìm min,max M=xy+yz+xz
3.Cho a,b,c>0. Chứng minh (a^3+b^3+c^3)^2 < (a^2+b^2+c^2)^3
1Cho x,y >1 . Chứng minh : x2/(y-1) + y2/ (x-1) lớn hơn hoặc bằng 8
2 Cho a,b,c,d >=0 . Chứng minh : (a+b)(a+b+c)(a+b+c+d) / abcd lớn hơn hoặc bằng 64
3 Cho a,b,c >= 0 . Chứng minh : (a+b+c)(ab+bc+ac) lớn hơn hoặc bằng 8(a+b)(b+c)(c+a) / 9
4 Cho a,b,c >=0 và a+b+c =1 . Chứng minh : bc/√(a+bc) + ac/√(b+ac) + ab/√(c+ab) bé hơn hoặc bằng 1/2
Giúp mình với!!Làm cả 2 câu nhé!
Cho `a,b,c>0` sao cho `a^4+b^4+c^4=3`
Chứng minh
`a)a^2/b+b^2/c+c^2/a>=3`
`b)a^2/(b+c)+b^2/(c+a)+c^2/(a+b)>=3/2`
cho a,b,c,d là các số dương thỏa mãn a+b+c+d=\(a^2+b^2+c^2+d^2\)
a) chứng minh \(a,b,c,d\le\frac{3}{2}\)
b) chứng minh\(2\left(a^3+b^3+c^3+d^3\right)+a+b+c+d\le12\)