Câu V (1,0 điểm)
Tìm giá trị nhỏ nhất của biểu thức: P = 5x2 + 4xy – 6x + y2 + 2030
Chứng minh rằng a5 – 5a3 + 4a chia hết cho 120 với mọi số nguyên a.
chứng minh rằng với mọi số nguyên a
a^4 + 6a^3 + 11a^2 + 6a chia hết cho 24
a^5 - 5a^3 + 4a chia hết cho 120
3a^4 -14a^3 + 21a^2 -10a chia hết cho 24
Chứng Minh với mọi số nguyên a
Câu 1: (a^4 +6a^3 + 11a^2 +6a) chia hết cho 24
Câu 2: (a^5 - 5a^3 + 4a) chia hết cho 120
Câu 3: (3a^4 -14a^3 +21a^2 - 10a) chia hết cho 24
với a,b là các số nguyên. chứng minh nếu \(4a^2+3ab-11b^2\)chia hết cho 5 thì \(a^4-b^4\)chia hết cho 5
Chứng Minh rằng (4a-3)^2-(3a-4)^2 luôn luôn chia hết ch 7 với mọi số nguyên a
Chứng minh: a5-a chia hết 30 với a ϵ Z
1 a. Chứng minh rằng: n5 - 5n3 + 4n chia hết cho 120 với mọi số nguyên n.
b. Chứng minh rằng: n3 - 3n2 - n + 3 chia hết cho 48 với mọi số lẻ n.
Giúp mình với: chứng minh rằng với mọi số nguyên tố n, ta có:
a)n^5-5n^3+4n chia hết cho 120
b) n^3-3n^2-n+3 chia hết cho 48 với mọi n lẻ?