\(a^2+b^2+3>ab+a+b\)
\(\Leftrightarrow2\left(a^2+b^2+3\right)>2\left(ab+a+b\right)\)
\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(a^2-2ab+b^2\right)+4>0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(a-b\right)^2+4>0\) \(\forall a,b\)
Vậy \(a^2+b^2+3>ab+a+b\forall a,b\)