Giải
\(A=\frac{1}{100}+\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{199}\)
\(\Rightarrow A< \frac{1}{100}+\frac{1}{100}+\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\)
\(\Rightarrow A< \frac{100}{100}=1\)
Vậy A < 1 (đpcm)
Giải
\(A=\frac{1}{100}+\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{199}\)
\(\Rightarrow A< \frac{1}{100}+\frac{1}{100}+\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\)
\(\Rightarrow A< \frac{100}{100}=1\)
Vậy A < 1 (đpcm)
Chứng minh:
A = \(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+.....+\frac{1}{199}+\frac{1}{200}>\frac{7}{12}\)
Chứng minh rằng:
a) \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\)=\(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}\)
b) \(\frac{51}{2}+\frac{52}{2}+...+\frac{100}{2}=1.3.5...99\)
Chứng tỏ:
\(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{199}+\frac{1}{200}\) < 1
chung minh rang
\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}\)
giup minh minh like cho nho giai chi tiet mot chut nhe
chứng minh rằng
\(A=\frac{1}{101}+\frac{1}{102}+....+\frac{1}{199}+\frac{1}{200}< 1\)1
Chứng minh :
\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)
Chứng minh:\(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{149}+\frac{1}{150}>\frac{1}{3}\)
Cho \(A=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+\frac{1}{104}+......+\frac{1}{199}+\frac{1}{200}\)
Chứng tỏ \(A
Chứng minh: \(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}<\frac{5}{8}\)