Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Kaneki Ken

Chứng minh :  9999931999 - 5555571997 chia hết cho 5   ( Sử dụng đồng dư thức )

Lê Chí Cường
22 tháng 10 2015 lúc 22:00

Ta thấy: 999993 đồng dư với 3(mod 5)

=>9999932 đồng dư với 32(mod 5)

=>9999932 đồng dư với 9(mod 5)

=>9999932 đồng dư với 4(mod 5)

=>9999932 đồng dư với -1(mod 5)

=>(9999932)999 đồng dư với (-1)999(mod 5)

=>9999931998 đồng dư với -1(mod 5)

=>9999931998 đồng dư với 4(mod 5)

=>9999931998.999993 đồng dư với 4.3(mod 5)

=>9999931999 đồng dư với 12(mod 5)

=>9999931999 đồng dư với 2(mod 5)

Lại có: 555557 đồng dư với 2(mod 5)

=>5555572 đồng dư với 22(mod 5)

=>5555572 đồng dư với 4(mod 5)

=>5555572 đồng dư với -1(mod 5)

=>(5555572)998 đồng dư với (-1)998(mod 5)

=>5555571996 đồng dư với 1(mod 5)

=>5555571996.555553 đồng dư với 1.2(mod 5)

=>5555571997 đồng dư với 2(mod 5)

                =>9999931999-5555571997đồng dư với 2-2(mod 5)

                =>9999931999-5555571997đồng dư với 0(mod 5)

                =>9999931999-5555571997 chia hết cho 5


Các câu hỏi tương tự
Nguyễn Thị Thu Hà
Xem chi tiết
Nhi Nguyễn
Xem chi tiết
Ngô Phương Chiển
Xem chi tiết
Kaneki Ken
Xem chi tiết
Tran Thi Thao Ly
Xem chi tiết
Trần Thị Thịnh
Xem chi tiết
Trần Thị Thịnh
Xem chi tiết
Phạm Văn Nam
Xem chi tiết
Kaneki Ken
Xem chi tiết