Vì: \(8^7=8.8^6=8.2^{10+2}=8.2^{12}\)
Nên: \(8^7-2^{12}=8^7.2^{12}-2^{12}\)
Ta có: \(2^{12}.7=2^{17}.2.7=2^{17}.14\)chia hết cho 14
Vậy: \(8^7-2^{12}\)chia hết cho 14
Ta có\(8\equiv1\left(mod7\right)\)
\(\Rightarrow8^7\equiv1\left(mod7\right)\)(1)
\(2^3\equiv1\left(mod7\right)\)
\(\Rightarrow2^{12}\equiv1\left(mod7\right)\)(2)
Từ (1) và (2) suy ra\(8^7-2^{12}\equiv0\left(mod7\right)\)
\(\Rightarrow8^7-2^{12}⋮7\)