Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Kaneki Ken

Chứng minh :

\(7^{7^{7^7}}-7^{7^7}\)chia hết cho 10

Dùng đồng dư thức

Lê Chí Cường
2 tháng 11 2015 lúc 20:11

Ta thấy: 7 đồng dư với 1(mod 2)

=>77 đồng dư với 17(mod 2)

=>77 đồng dư với 1(mod 2)

=>77=2k+1

=>\(7^{7^7}=7^{2k+1}\)

7 đồng dư với 3(mod 4)

=>7 đồng dư với -1(mod 4)

=>72 đồng dư với (-1)2(mod 4)

=>72 đồng dư với 1(mod 4)

=>(72)k đồng dư với 1k(mod 4)

=>72k đồng dư với 1(mod 4)

=>72k.7 đồng dư với 1.7(mod 4)

=>72k+1 đồng dư với 7(mod 4)

=>72k+1 đồng dư với 3(mod 4)

=>72k+1=4m+3

=>\(7^{7^{7^7}}=7^{4m+3}\)

74=2401 đồng dư với 1(mod 10)

=>(74)m đồng dư với 1m(mod 10)

=>74m đồng dư với 1(mod 10)

=>74m.73 đồng dư với 1.73(mod 10)

=>74m+3 đồng dư với 343(mod 10)

=>74m+3 đồng dư với 3(mod 10)

=>\(7^{7^{7^7}}\) đồng dư với 3(mod 10)

Lại có: 7 đồng dư với 3(mod 4)

=>7 dồng dư với -1(mod 4)

=>77 dồng dư với (-1)7(mod 4)

=>77 dồng dư với -1(mod 4)

=>77 dồng dư với 3(mod 4)

=>77=4n+3

=>\(7^{7^7}=7^{4n+3}\)

74=2401 đồng dư với 1(mod 10)

=>(74)n đồng dư với 1n(mod 10)

=>74n đồng dư với 1(mod 10)

=>74n.73 đồng dư với 1.73(mod 10)

=>74n+3 đồng dư với 343(mod 10)

=>74n+3 đồng dư với 3(mod 10)

=>\(7^{7^7}\)đồng dư với 3(mod 10)

             =>\(7^{7^{7^7}}-7^{7^7}\) đồng dư với 3-3(mod 10)

             =>\(7^{7^{7^7}}-7^{7^7}\)đồng dư với 0(mod 10)

            =>\(7^{7^{7^7}}-7^{7^7}\)chia hết cho 10


Các câu hỏi tương tự
tran khac hap
Xem chi tiết
tran khac hap
Xem chi tiết
tran khac hap
Xem chi tiết
Đặng Hoài Thương
Xem chi tiết
Kaneki Ken
Xem chi tiết
Nguyễn Văn Thi
Xem chi tiết
tran khac hap
Xem chi tiết
thánh chó
Xem chi tiết
Nguyễn Văn Thi
Xem chi tiết