Chứng minh bằng phương pháp phản chứng :
Giả sử \(\sqrt{7}\)là một số hữu tỉ . Suy ra có thể biểu diễn dưới dạng \(\sqrt{7}=\frac{m}{n}\) (\(m,n\in Z,n\ne0\)) và \(\frac{m}{n}\)tối giản.
\(\Rightarrow7n^2=m^2\Rightarrow m^2⋮7\Rightarrow m⋮7\)(1)
Do đó, đặt m = 7k (\(k\in N\))
=> \(m^2=49k^2\Rightarrow n^2=7k^2\Rightarrow n^2⋮7\Rightarrow n⋮7\)(2)
Từ (1) và (2) Suy ra được m,n cùng chia hết cho 7
=> \(\frac{m}{n}\) chưa là phân số tối giản (vô lí vì trái với giả thiết)
Điều vô lí chứng tỏ \(\sqrt{7}\)là số vô tỉ.