\(5+5^2+5^3+...+5^{10}\)
\(=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^9+5^{10}\right)\)
\(=5\left(1+5\right)+...+5^9\left(1+5\right)\)
\(=5.6+...+5^9.6\)
\(=6\left(5+...+5^9\right)⋮6\)
5 + 52 + 53 + 54 + ... + 59 + 510
= ( 5 + 52 ) + ( 53 + 54 ) + ... + ( 59 + 510 )
= 5( 1 + 5 ) + 53( 1 + 5 ) + ... + 59( 1 + 5 )
= 5.6 + 53.6 + ... + 59.6
= 6( 5 + 53 + ... + 59 ) chia hết cho 6 ( đpcm )
\(5+5^2+5^3+...+5^{10}\)
\(=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^9+5^{10}\right)\)
\(=5\left(1+5\right)+5^3\left(1+5\right)+...+5^9\left(1+5\right)\)
\(=6\left(5+5^3+...+5^9\right)\) chia hết cho 6