Goi UCLN (2n+3;n+1)=d
ta có: 2n+3 chia hết d;n+1 chia hết d
=>(2n+3) - (n+1) chia hết d
=>2n+3 - 2(n-1) chia hết d
=>2n+3 - 2n+2 chia hết d
=>2n - 2n + 3 - 2chia hết d
=>1 chia hết d
=>1=d
vậy\(\frac{2n+3}{n+1}\) là phân số tối giản
Gọi UCLN( 2n+3; n+1 ) là d, ta có: (d thuộc N* )
2n+3 chia hết cho d và n+1 chia hết cho d
=> 2n+3 - n-1 chia hết cho d
=> 2n+3 - 2n-2 chia hết cho d
=> 1 chia hết cho d
=> d=1
Vậy 2n+3/n+1 luôn là phân số tối giản với mọi số tự nhiên n.