Chứng minh luôn tồn tại số tự nhiên dạng : 20192019...2019 chia hết cho 2020
( mình làm bài này rồi nhưng thầy bảo nếu áp dụng dấu hiệu chia hết sẽ nhanh hơn nhưng mình không rõ lắm chỉ mình với ạ!?)
Chứng minh : n^5-11n chia hết cho 5
Chứng minh :n^3+23n chia hết cho 5
a) Cho n không chia hết cho 3. Chứng minh n^2:3 dư 1
b) Cho n không chia hết cho 5. Chứng minh n^4 : 5 dư 1
c) Cho n không chia hết cho 7. Chứng minh n^6 :7 dư 1
a)Chứng minh :\(3^{100}+3^{105}-4\)chia hết cho 13
b)chứng minh : \(3^{100}-4\)chia hết chom7
c) chứng minh :\(1532^5-5\)chia hết cho 9
1. Cho P là số nguyên tố lớn hơn 3.Chứng minh P^2 - 1 chi hết cho 24
2. Chứng minh (a+b+c) chia hết cho 30 thì (a^5+b^5+c^5) chia hết cho 30
cho a+3 chia hết cho 5, b+4 chia hết cho 5.
Chứng minh rằng a^2+b^2 chia hết cho 5
chứng minh rằng 3 số tự nhiên và 3 số nguyên liên tiếp chia hết cho 6
chứng minh rằng 5 số tự nhiên và 5 số nguyên liên tiếp chia hết cho 120
chứng minh rằng a(a-1)-(a+3)(a+2) chia hết cho 6
chứng minh rằng a(a+2)-(a-7)(a-5) chia hết cho 7
cho p q là 2 số nguyên tố lớn hơn 5. Chứng minh p^4+2019q^4 chia hết cho 20
Chứng minh chia hết cho 5 không cần chia trường hợp có được không? Giúp mk vs
Chứng minh rằng với mọi số tự nhiên n ,ta có:
(n + 3)2 - n2 chia hết cho 3
(n - 5)2 - n2 chia hết cho 5 và không chia hết cho 2