cho \(x+y+z=2\) và \(x,y,z\) thuộc tập hợp số nguyên
\(CMR:P=\left(yz+zx\right)\left(zx+xy\right)\left(xy+zz\right)\) là số chính phương
B1. CMR nếu n là số tự nhiên sao cho 2n+1 và 3n+1 đều là số chính phương thì n là bội của 40.
B2. Cho a,b,c là các số khác nhau và khác 0. Cmr nếu \(a.\left(y+z\right)=b.\left(z+x\right)=c.\left(x+y\right)\) thì \(\frac{y-z}{a.\left(b-c\right)}=\frac{z-x}{a.\left(b-c\right)}=\frac{x-y}{c.\left(a-b\right)}\)
GIÚP MÌNH NHA MAI MÌNH PHẢI NỘP RỒI
tìm x,y thuộc z:
\(a,\left(x+3\right)\left(y+2\right)=1\)
\(b,\left(x-1\right)\left(x+y\right)=33\)
\(c,\left(2x-5\right)\left(y-6\right)=17\)
\(d,3x+4y-xy=16\)
GIÚP MIK VS, MIK CẦN GẤP LẮM Ạ
Tìm x,y thuộc Z sao cho \(\left(x-7\right).\left(1+xy\right)-9=0\)
1.Tìm x,y thuộc z:
a,\(\left|2-x\right|+2=x\)
b,\(x+7=\left|x-9\right|\)
2.Tìm x,y thuộc z:
a,\(\left|x+10\right|+\left|5-y\right|=0\)
b,\(\left|x-40\right|+\left|x-y+10\right|=0\)
c,\(\left|x+y-30\right|+\left|x-y-4\right|=0\)
d,\(\left|x+y-15\right|+\left|xy-56\right|=0\)
GIÚP MIK VS Ạ, MIK ĐANG CẦN GẤP
1) cho 2 đường thẳng song song a và b. Trên đường thẳng a lấy 6 điểm phân biệt. Trên đường thẳng b lấy 5 điểm phân biệt. Tính số tam giác có đỉnh là 3 trong các điểm đã cho
2)tìm a;b sao cho a+b=a:b \(\left(b\ne0\right)\)
b)cho x;y;z là 3 số nguyên dương nguyên tố cùng nhau thỏa mãn
\(\left(x-z\right)\left(y-z\right)=z^2\)
chứng minh rằng x;y;z là số chính phương
Tính giá trị của các biểu thức sau:
a) 2x - \(\frac{y\left(x^2-2\right)}{xy+y}\)tại x=0 ; y=-1
b) xy + y^2 z^2 + z^3 x^3 tại x=1 ; y=-1 và z=2
1.tìm \(x\in Z\) sao cho \(\dfrac{2x+1}{x+3}\) là 1 số nguyên
1.tìm \(x\in Z\) sao cho \(\dfrac{x-1}{x+5}\) là 1 số nguyên
1.tìm \(x,y\in Z\) sao cho \(\left(x-1\right).\left(y-3\right)=7\) là 1 số nguyên
cho x, y và z là số dương sao cho
{x + xy + y = 8
y + yz + z = 15
z + zx + x = 35}
tìm giá trị của x + y + z + xy