Tìm GTLN của \(P=\frac{\sqrt{x}+4\sqrt{y}}{\sqrt{x}+2\sqrt{y}}\) với \(x\ge0;y\ge0;x\ne9y\)
Tìm GTLN của:
\(A=\sqrt{x-1}+\sqrt{y-2}\)biết \(x+y=4\)
\(B=\frac{\sqrt{x-1}}{x}+\frac{\sqrt{y-2}}{y}\)
\(C=x^3\left(3-x\right)\)với \(x\ge0\)
Rút gọn
a)\(\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)(\(x\ge0;y\ge0;x\ne y\))
b)\(\frac{x\sqrt{x}-8}{x+2\sqrt{x}+4}\)\(\left(x\ge0\right)\)
Cho A = \(\left(\frac{x-y}{x-\sqrt{y}}-\frac{x\sqrt{x}-y\sqrt{y}}{x-y}\right):\left(\frac{\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\right)\)
a) Rút gọn A
b) CM: \(A\ge0\)
Cho 3 số dương x,y,z thỏa mãn \(\frac{1}{\sqrt{x}+\sqrt{y}}+\frac{1}{\sqrt{y}+\sqrt{z}}+\frac{1}{\sqrt{z}+\sqrt{x}}=3\)
Tìm GTLN của A=\(\frac{1}{3\sqrt{x}+3\sqrt{y}+2\sqrt{z}}+\frac{1}{3\sqrt{x}+2\sqrt{y}+3\sqrt{z}}+\frac{1}{2\sqrt{x}+3\sqrt{y}+3\sqrt{z}}\)
Cho x,y>0. Tìm GTLN của \(\frac{x}{\sqrt{y}}+\frac{y}{\sqrt{x}}-\sqrt{x}-\sqrt{y}\)
Giúp mình với!!!!!!!!!!!!!!!!!!
Rút gọn và tính giá trị biểu thức: a, \(\frac{x+\sqrt{xy}}{y+\sqrt{xy}}\)
b, \(\frac{\sqrt{a}+a\sqrt{b}-\sqrt{b}-b\sqrt{a}}{ab-1}\)
c, \(\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2\)
d,\(\sqrt{\frac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}\left(x\ge0\right)\)
e,\(\frac{x-1}{\sqrt{y}-1}\sqrt{\frac{\left(y-2\sqrt{y}+1\right)^2}{\left(x-1\right)^4}}\left(x\ne1,y\ne1,y>0\right)\)
Tìm GTLN
\(A=\frac{\sqrt{x-1}}{x}+\frac{\sqrt{y-2}}{y}+\frac{\sqrt{z-3}}{z}v\text{ới}x\ge1;y\ge2;z\ge3\)
Cho x,y,z > 0. Tìm GTLN của: \(A=\frac{\sqrt{yz}}{x+2\sqrt{yz}}+\frac{\sqrt{xz}}{y+2\sqrt{xz}}+\frac{\sqrt{xy}}{z+2\sqrt{xy}}\)