Cho hình thang cân ABCD có AB>CD;góc A=góc B=60°; AB=à và có một đường tròn tâm ở nội tiếp hình thàn tiếp xúc với các cạnh AB,p; BC; CD; DA lần lượt tại các điểm M, N, P, Q. Chứng minh rằng
a. Tứ giác OMBN nội tiếp được đường tròn.
B. Các đường thẳg AD, BC, MP đồng quy tại một điểm S.
C. Tính QN và chu vi tam giác SDC theo a
D. Gọi S1 là diện tích của tam giác SDC; S2 là diện tích của tam giác SAB. Tính tỉ số S1/S2
Giúp mình với câu a b c thui CX đc
.
cho hình thang cân ABCD có ab>cd. góc A bằng góc B = 60 độ, AB=a. một đường tròn tâm O nội tiếp hình thang tiếp xúc với các cạnh AB,BC,DC,DA tại M,N,P,Q. CMR:
a) OMBN nội tiếp
b) AD,BC,MP đồng quy
c) Tính QN và chu vị SDC theo a
d) gọi S1 là diện tích tam giác SDC và S2 là diện tích tam giác SAB.Tính tỉ số S1 và S2
Cho 3 hình tròn có bán kính r1, r2, r3 và có diện tích lần lượt là S1,S2,S3 tiếp xúc ngoài với nhau và cùng tiếp xúc với đường thẳng (d). Trong đó r3 nhỏ nhất. Tìm min căn(S1×S2) theo độ dài cho trước r3.
Cho tam giác ABC có 3 góc nhọn nội tiếp (O;R). Vẽ 2 đường cao BD và CE của tam giác ABC cắt nhau tại H, DE cắt (O) lần lượt tại P và Q (P thuộc cung nhỏ AB). 1/Chứng tỏ BEDC nội tiếp, xác đinh tâm của nó. 2/Chứng tỏ BH.DH=HE.HC. 3/Chứng tỏ tam giác APQ cân tại A và AP2=AE.AB. 4/Gọi S1 là diện tích tam giác APQ, S2 là diện tích tam giác ABC. Giả sử S1/S2=PQ/2BC. Tính BC theo R''.
Cho tam giác ABC có A bằng 60 độ .Các điểm O,I lần lượt là tâm đường tròn ngoại tiếp tam giác và nội tiếp tam giác.Chứng mình B,O,I,C cùng thuộc một đường tròn
Cho tam giác ABC , D là điểm trên cạnh BC sao cho đường tròn nội tiếp tam giác ABD và tam giác ADC tiếp xúc nhau tại một điểm thuộc cạnh AD. Gọi I, J lần lượt là tâm đường tròn nội tiếp tam giác ABD và tam giác ADC , O là tâm đường tròn ngoại tiếp tam giác AIJ
a) Xác định vị trí điểm D trên cạnh BC
b) Từ câu a) chứng minh rằng đường phân giác góc BAC qua tâm O
Cho tam giác ABC , D là điểm trên cạnh BC sao cho đường tròn nội tiếp tam giác ABD và tam giác ADC tiếp xúc nhau tại một điểm thuộc cạnh AD. Gọi I, J lần lượt là tâm đường tròn nội tiếp tam giác ABD và tam giác ADC , O là tâm đường tròn ngoại tiếp tam giác AIJ
a) Xác định vị trí điểm D trên cạnh BC
b) Từ câu a) chứng minh rằng đường phân giác góc BAC qua tâm O
Cho tam giác ABC có đường cao AH, nội tiếp trong đường tròn tâm O, đường kính BC. Gọi E,D lần lượt là hình chiếu của H trên cạnh AB, AC.
a/ CMR: tứ giác ADHE là hình chữ nhật
b/ Chứng minh AB.AE=AD.AC
c/ Gọi I,J lần lượt k là tâm các đường tròn ngoại tiếp tam giác CDH,BEH.Xác định vị trí tương đối giữa các đường tròn (i) và (J) và (O)
d/ CMR: ID là tiếp tuyến của đường tròn ngoại tiếp tam giác AEH.
cho (I) và (O) lần lượt là đường tròn nội tiếp và ngoại tiếp góc A CỦA tam giác ABC,biết phân giác góc A cắt đường tròn ngoại tiếp tam giác ABC tại M. BIẾT BM=3cm .tính OI