Cho Tam giác ABC nhọn. Đường thẳng đi qua trực tâm H của Tam giác cắt cạnh AB ÁC lần lượt tại P và Q. chứng minh rằng: Nếu H là trung điểm PQ thì PQ vuông góc với MH trong đó M Là trung điểm BC
cho tam giác ABC nhọn, đường thẳng d đi qua trực tâm H cắt AB, AC lần lượt tại P,Q. Giả sử H là trung điểm của PQ thì chứng minh MH vuông góc PQ với M là trung điểm BC
cho tam giác ABC nhọn, đường thẳng d đi qua trực tâm H cắt AB, AC lần lượt tại P.Q. Giả sử H là trung điểm của PQ thì chứng minh MH vuông góc PQ với M là trung điểm BC
cho tam giác ABC nhọn, đường thẳng d đi qua trực tâm H cắt AB, AC lần lượt tại P.Q. Giả sử H là trung điểm của PQ thì chứng minh MH vuông góc PQ với M là trung điểm BC
( Giải mà không áp ụng Ta Lét được không ạ )
Cho tam giác ABC nhọn trực tâm H. Một đường thẳng đi qua H cắt AB, AC theo thứ tự tại P, Q sao cho HP=HQ. Gọi M là trung điểm BC. Chứng minh HM vuông góc với PQ
Cho tam giác ABC nhọn, trực tâm H các đường cao BD , CE . Gọi M là trung điểm của BC . Lấy điểm K đối xứng với C qua H
a) Qua K kẻ một đường thăngr song song với AC cắt cạnh AB tại P nối PH cắt AC tại Q . CHỨNG MINH HP=HQ
b) chứng minh MH vuông góc với PQ
c) gọi I là trung điểm DE , J là trung điểm AH . chứng minh I, J , M thẳng hàng
cho tam giác ABC có 3 góc nhọn, các đường cao AD,BE,CF cắt nhau tại H. Gọi M là trung điểm BC. Đường thẳng vuông góc HM tại H lần lượt cắt AB và AC tại P và Q. Chứng minh: H là trung điểm PQ
cho tam giác ABC có 3 góc nhọn, trực tâm là H. M là trun điểm BC. Đường thẳng vuông góc với MH tại H cắt cạnh AB, AC lần lượt tại E và F. Chứng minh tam giác MEF cân.
Cho tam giác ABc nhọn, H là trực tâm, O là trung điểm của BC. Đường thẳng vuông góc với OH tại H cắt AB,Ac lần lượt tại D và E. Chứng minh H là trung điểm của DE