Chứng minh rằng:
a) \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2008^2}<1\)
b) \(\frac{1}{1001}+\frac{1}{1002}+\frac{1}{1003}+...+\frac{1}{2000}>\frac{13}{21}\)
Chứng minh rằng :\(\frac{1}{1000}+\frac{1}{1001}+...+\frac{1}{2000}>\frac{1}{2}\)
Cho S = \(\frac{-1}{1001}+\frac{-1}{1002}+\frac{-1}{1003}+...+\frac{-1}{2000}\)
Chứng tỏ rằng S<\(\frac{-7}{12}\)
Chứng minh rằng : \(\frac{1}{201}< \frac{1}{1001}+\frac{1}{1002}+\frac{1}{1003}+\frac{1}{1004}+\frac{1}{1005}< \frac{1}{201}\)Ai giải nhanh mình tick nha
CHỨNG MINH \(\frac{1}{1001}+\frac{1}{1002}+\frac{1}{1003}+...+\frac{1}{1500}>\frac{1}{3}\)
giúp mình với 1h mình hc r,cảm ơn nhaaaaaa
Chứng tỏ:
\(\frac{1}{1001}\)+\(\frac{1}{1002}\)+\(\frac{1}{1003}\)+...+\(\frac{1}{2000}\)>\(\frac{13}{21}\)
Chứng minh rằng: \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2001}-\frac{1}{2002}=\frac{1}{1002}+\frac{1}{1003}+...+\frac{1}{2002}\)
Chứng minh rằng: \(\frac{1}{100}\)+\(\frac{1}{1001}\)+............+\(\frac{1}{2000}\)> \(\frac{1}{2}\)
CHO:A=\(\frac{455}{1}+\frac{454}{2}+\frac{453}{3}+...+\frac{1}{455}\)
chứng minh rằng :A>2007