a2+b2-c2 = (a+b+c)2 - 2(a+c)(b+c) = -2(a+b)(b+c) = -2(a+b+c-b)(a+b+c-a) = -2ab
làm tương tự với 2 mẫu còn lại. Đến đây chắc em hiểu rồi phải không.
a2+b2-c2 = (a+b+c)2 - 2(a+c)(b+c) = -2(a+b)(b+c) = -2(a+b+c-b)(a+b+c-a) = -2ab
làm tương tự với 2 mẫu còn lại. Đến đây chắc em hiểu rồi phải không.
cho (a+b+c)^2 = a^2 + b^2 +c^2 và abc khác 0
cmr bc/a^2 + ac/b^2 +ab/c^2 = 3
cho abc=1. rút gọn
a/ab+a+1 + b/bc+b+1 + c/ca+c+1
cho (a+b+c)^2=a^2+b^2+c^2 và abc khác 0 chứng minh bc /a^2 +ac /b^2 + ab/c^2 =3
Cho (a+b+c)^2=a^2+b^2+c^2 và abc khác 0.
CMR: bc/a^2 + ab/c^2 + ac/b^2=3.
cho c^2 +2(ab -ac -bc ) =0 và b khác c, a+b khác 0. Chứng minh a^2 +(a-c)^2 /b^2+(b-c)^2 = a-c / b-c
cho x=bc-a^2, y=cả-b^2, z=ab-c^2 và xyz khác 0.cm nếu 1/x1/y+1/=0 thi a/x^2+b/y^2+c/z^2=0
cho a,b,c thỏa mãn điều kiện a^2+b^2+c^2=1.cm abc+2(1+a+b+c+ab+ac+bc)>=0
Tcho các số thực a, b, c đôi một khác nhau thỏa a^3 b^3 c^3=3abc và abc ≠0 tính P=(ab^2)/(a^2 b^2-c^2 ) (bc^2)/(b^2 c^2-a^2 ) (ca^2)/(c^2 a^2-b^2 )
cho a+b+c=0 ( a,b,c khác 0) rút gọn :
C=(a^2/bc)+(b^2/ca)+(c^2/ab)
D=(a^2/a^2-b^2-c^2)+(b^2/b^2-c^2-a^2)+(c^2/c^2-a^2-b^2)
Cho a+ b + c =0 (a,b,c khác 0). Chứng minh rằng a^2/bc+b^2/ca+c^2/ab-3=0