Cho a,b,c là 3 số khác 0 thỏa mãn \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\).CMR \(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}=\dfrac{3}{abc}\)
Cho abc khác 0, \(a^3+b^3+c^3=3abc\) . Tính A= \(\left(1+\dfrac{a}{b}\right).\left(1+\dfrac{b}{c}\right).\left(1+\dfrac{c}{a}\right)\)
\(Cho 3 số đôi một khác nhau. Chứng minh rằng : \(\dfrac{b-c}{\left(a-b\right)\left(a-c\right)}+\dfrac{c-a}{\left(b-c\right)\left(b-a\right)}+\dfrac{a-b}{\left(c-a\right)\left(c-b\right)}\) =\(2\left(\dfrac{1}{a-b}+\dfrac{1}{b-c}+\dfrac{1}{c-a}\right)\)\)
Cho \(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{c+a-b}{b}\).Tính P =\(\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{c}{b}\right)\left(1+\dfrac{a}{c}\right)\)
Cho a,b,c thỏa mãn \(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{c+a-b}{b}\)
Tính giá trị M = \(\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{c}{b}\right)\left(1+\dfrac{a}{c}\right)\)
Cho a, b, c là các số dương thỏa mãn: a3 + b3 + c3 = 3abc. Tính giá trị biểu thức:
P = \(\left(\dfrac{a}{b}-1\right)+\left(\dfrac{b}{c}-1\right)+\left(\dfrac{c}{a}-1\right)\)
Cho ab,c thuộc R, CM:
\(\dfrac{a}{bc}+\dfrac{b}{ca}+\dfrac{c}{ab}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\left(vớia,b,c>0\right)\)
Cho 0 < a < b < c < d. Chứng minh: \(\left(b+c\right).\left(\dfrac{1}{b}+\dfrac{1}{c}\right)< \dfrac{\left(a+d\right)^2}{ad}\)
\(A=\left(\dfrac{x-5\sqrt{x}}{x-25}-1\right):\left(\dfrac{25-x}{x+2\sqrt{x}-15}-\dfrac{\sqrt{x}+3}{\sqrt{x}+5}+\dfrac{\sqrt{x}-5}{\sqrt{x}+3}\right)\)
\(B=\left(\dfrac{2+x}{2-x}-\dfrac{4x^2}{x^2-4}-\dfrac{2-x}{x+2}\right):\dfrac{x^2-3x}{2x^2-x^3}\)
a) Rút gọn A & B
b) Tìm x để B > 0
c) Tính B khi \(\left|1-x\right|=0\)