Phép nhân và phép chia các đa thức

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Yêu lớp 6B nhiều không c...

Cho abc khác 0, \(a^3+b^3+c^3=3abc\) . Tính A= \(\left(1+\dfrac{a}{b}\right).\left(1+\dfrac{b}{c}\right).\left(1+\dfrac{c}{a}\right)\)

Khôi Bùi
24 tháng 9 2018 lúc 17:22

\(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\left(a^3+b^3+3a^2b+3b^2a\right)+c^3-3a^2b-3b^2a-3abc=0\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2-3ab\right]=0\)

\(\Leftrightarrow\left(a+b+c\right)\left[a^2+b^2+2ab-ac-bc+c^2-3ab\right]=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\left(1\right)\)

C/m : \(a^2+b^2+c^2-ab-bc-ac\ge0\)

Giả sử điều phải c/m là đúng , ta có :

\(a^2+b^2+c^2-ab-bc-ac\ge0\)

\(\Rightarrow2\left(a^2+b^2+c^2-ab-bc-ac\right)\ge0\)

\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac\ge0\)

\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)\ge0\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) ( điều này luôn đúng )

\(\Rightarrow\) điều giả sử là đúng

\(\Rightarrow a^2+b^2+c^2-ab-bc-ac\ge0\left(2\right)\)

Từ ( 1 ) ; ( 2 )

\(\Rightarrow a+b+c=0\)

\(\Rightarrow a+b=-c;b+c=-a;a+c=-b\)

Lại có : \(A=\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\)

\(=\left(\dfrac{a+b}{b}\right)\left(\dfrac{b+c}{c}\right)\left(\dfrac{a+c}{a}\right)\)

\(=\dfrac{-c}{b}.\dfrac{-a}{c}.\dfrac{-b}{a}\)

\(=\dfrac{-abc}{abc}=-1\)

Vậy \(A=-1\)


Các câu hỏi tương tự
Nguyễn Anh Thư
Xem chi tiết
Trịnh Hương Giang
Xem chi tiết
Nguyễn Thị Hồng Nhung
Xem chi tiết
Công chúa vui vẻ
Xem chi tiết
Vũ Bích Phương
Xem chi tiết
Nguyễn Ngọc Gia Hân
Xem chi tiết
Nguyễn Thị Mỹ Lệ
Xem chi tiết
Duong Thi Nhuong
Xem chi tiết
Phạm Đức Minh
Xem chi tiết