Điều kiện đúng phải là k là số tự nhiên
a)\(10^k-1⋮19\)
\(\Rightarrow10^k\equiv1\left(mod19\right)\)
\(\Rightarrow10^{2k}\equiv1\left(mod19\right)\)
\(\Rightarrow10^{2k}-1⋮19\)
b) Cách làm tương tự
Điều kiện đúng phải là k là số tự nhiên
a)\(10^k-1⋮19\)
\(\Rightarrow10^k\equiv1\left(mod19\right)\)
\(\Rightarrow10^{2k}\equiv1\left(mod19\right)\)
\(\Rightarrow10^{2k}-1⋮19\)
b) Cách làm tương tự
Cho \(10^k\)- 1 chia hết cho 19 ( k > 1 ).CMR:
a) \(^{10^{2k}}\)-1 chia hết cho 19
b) \(10^{3k}\)-1 chia hết cho 19
Cho 10k -1 chia hết cho 19 với k>1.Chứng minh rằng:
a)102k-1 chia hết cho 19
b)103k-1 chia hết cho 19
Cho 10^k-1 chia hết cho 19(k>1). Chứng minh
a,10^2k-1 chia hết cho19
b,10^3k-1 chia hết cho 19
Cho 10k -1 chia hết cho 19 với k>1.Chứng minh rằng:
a,102k -1 chi hết cho 19
b, 103k-1 chia hết cho 19
Cho \(^{10^k}\)- 1 \(⋮\)19 (k>1) CMR
a, \(10^{2k}\)- 1 \(⋮\)19
b,\(10^{3k}\)- 1 \(⋮\)19
Cho 10k-1 chia hết cho 19 với k >1 . Chứng minh rằng
a, 102k - 1 chia hết cho 19
b , 103k -1 chia hết cho 19
Cho 10k - 1 chia hết cho 19 với k > 1. Chứng mình rằng:
a) 102k - 1 chia hết cho 19
b) 103k - 1 chia hết cho 19
Cho 10k - 1 chia hết cho 19 với k > 1. Chứng mình rằng:
a) 102k - 1 chia hết cho 19
b) 103k - 1 chia hết cho 19
cho 10k-1 chia hết cho 19 .Chứng minh rằng :
a)102k -1 chia hết cho 19
b) 103k -1 chia hết cho 19