cho \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+x}\) . chứng minh rằng hai trong ba số x, y, z có hai số đối nhau.
Cho ba số x,y,z khác nhau và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\) Chứng minh rằng trong ba số x,y,z có ít nhất một cặp số đối nhau
cho 3 số x, y, z khác 0 thõa mãn\(\hept{\begin{cases}x+y+z=2015\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{2015}\end{cases}}\)
Chứng minh rằng trong 3 số x, y, z tồn tại 2 số đối nhau
cho ba số x,y,z khác 0 thỏa mãn x+y+x =2010 ;\(\frac{1}{x}\)+\(\frac{1}{y}\)+\(\frac{1}{z}\)=\(\frac{1}{2010}\)
chứng minh rằng trong 3 số x,y,x luôn tồn tại hai số đối nhau
Cho các số thực dương x,y,z thỏa mãn x+y+z=3. Chứng minh rằng: \(\frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}>=\frac{3}{2}\)
cho \(\frac{x}{y}-\frac{y}{z}-\frac{z}{x}=\frac{y}{x}-\frac{z}{y}-\frac{x}{z}\). Chứng minh rằng trong ba số x,y,z tồn tại hai số bằng nhau hoặc đối nhau?
ai trả lời nhanh và chi tiết nhất mình sẽ tick đúng ạ, cảm ơn mọi người nhiều
Cho các số thực dương x,y,z thỏa mãn x+y+z=3. Chứng minh rằng: \(\frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}\ge\frac{3}{2}\)
Cho x,y,z là các số thực thỏa mãn điều kiện: \(x+y+z=3\); \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{3}\).
Chứng minh rằng ít nhất một trong ba số x,y,z bằng 3.
Cho a,b,c khác 0 thoả mãn các điều kiện:\(x+y+z=2014\)
và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{2014}\). Chứng minh trong 3 số x, y , z tồn tại 2 số đối nhau.