Ta có : \(\frac{x}{x+y+z}>\frac{x}{x+y+z+t}\)
Tương tự và cộng lại ta được : \(M>\frac{x}{x+y+z+t}+\frac{y}{x+y+z+t}+\frac{z}{x+y+z+t}+\frac{t}{x+y+z+t}=1\)(*)
Lại có : \(\frac{x}{x+y+z}< \frac{x+t}{x+y+z+t}\)
Tương tự và cộng lại ta được : \(M< \frac{x+t}{x+y+z+t}+\frac{y+z}{x+y+z+t}+\frac{z+x}{x+y+z+t}+\frac{t+y}{x+y+z+t}=2\)(**)
Từ (*) và (**) suy ra \(1< M< 2\)=> M không phải là số tự nhiên ( đpcm )