cần c/m : nếu x+y+z=0 thì x3+y3+z3=3xyz
rồi áp dụng vô tính K=[xyz(1/x3+1/y3+1/z3)-2]2017=(3-2)2017=1
cần c/m : nếu x+y+z=0 thì x3+y3+z3=3xyz
rồi áp dụng vô tính K=[xyz(1/x3+1/y3+1/z3)-2]2017=(3-2)2017=1
Cho \(\frac{x^2-yz}{yz}+\frac{y^2-zx}{zx}+\frac{z^2-xy}{xy}=0\)
Tính giá trị của M=\(\left(1+\frac{z}{x}\right)\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\)
Cho \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\left(x;y;z\ne0\right).\)
Tính \(\frac{yz}{x^2}+\frac{zx}{y^2}+\frac{xy}{z^2}\)
#Đức Lộc#
Cho \(x,y,z\ne0\)và đôi một khác nhau thỏa mãn \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\). Chứng minh rằng
\(\left(\frac{1}{x^2+2yz}+\frac{1}{y^2+2zx}+\frac{1}{z^2+2xy}\right)\left(x^{2016}+y^{2017}+z^{2018}\right)=xy+yz+zx\)
cho \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\left(x,y,z\ne0\right).\)
Tính \(\frac{yz}{x^2}+\frac{xz}{y^2}+\frac{xy}{z^2}\)
Chứng minh rằng:
a, nếu x+y=1 thì \(\frac{x}{y^3-1}+\frac{y}{x^3-1}+\frac{2\left(xy-2\right)}{x^2y^2+3}=0\)
b, nếu x,y,z khác -1 thì\(\frac{xy+2x+1}{xy+x+y+1}+\frac{yz+2y+1}{yz+z+y+1}+\frac{zx+2z+1}{zx+z+x+1}=3\)
c, Cho x,y,z đôi một khác nhau thỏa mãn\(\frac{x}{y-z}+\frac{y}{z-x}+\frac{z}{x-y}=0\) thì\(\frac{x}{\left(y-z\right)^2}+\frac{y}{\left(z-x\right)^2}+\frac{z}{\left(x-y\right)^2}=0\)
Tính : S$=\left(yz+zx+xy\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)-xyz\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)$
Giúp e với
Cho \(\frac{1}{yz-x^2}+\frac{1}{zx-y^2}+\frac{1}{xy-z^2}=0\)CMR: \(\frac{x}{\left(yz-x^2\right)^2}+\frac{y}{\left(zx-y^2\right)^2}+\frac{z}{\left(xy-z^2\right)^2}=0\)
Làm nhanh dùm vs. Giải chi tiết ra nha, ko ghi chtt
Cho abcd = 1. Tính
\(S=\left(yz+zx+xy\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)-xyz\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)\)
Cho \(\frac{1}{x}+\frac{1}{y}+\frac{1}{y}=0\left(x,y,z\ne0\right).\)
Tinh
\(\frac{yz}{x^2}+\frac{xz}{y^2}+\frac{xy}{z^2}\)