Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
ne clo

cho x,y,z>0 và x+y+z=3 tính giá trị nhỏ nhất của (1/x+x^2)+(1/y+y^2)+(1/z+z^2)

Akai Haruma
3 tháng 2 2023 lúc 23:45

Lời giải:
Áp dụng BĐT Cô-si:

$\frac{1}{x(x+1)}+\frac{x}{2}+\frac{x+1}{4}\geq 3\sqrt[3]{\frac{1}{x(x+1)}.\frac{x}{2}.\frac{x+1}{4}}=\frac{3}{2}$

Tương tự:

$\frac{1}{y(y+1)}+\frac{y}{2}+\frac{y+1}{4}\geq \frac{3}{2}$

$\frac{1}{z(z+1)}+\frac{z}{2}+\frac{z+1}{4}\geq \frac{3}{2}$

Cộng theo vế các BĐT trên:

$\frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}+\frac{3}{4}(x+y+z)+\frac{3}{4}\geq \frac{9}{2}$

$\frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}+\frac{9}{4}+\frac{3}{4}\geq \frac{9}{2}$

$\Rightarrow \frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}\geq \frac{3}{2}$ 

Vậy gtnn của biểu thức là $\frac{3}{2}$ khi $x=y=z=1$


Các câu hỏi tương tự
Trịnh Hoàng Đông Giang
Xem chi tiết
Vũ Thu Huyền
Xem chi tiết
Nguyễn Thị Quỳnh Anh
Xem chi tiết
Đào Thu Hoà
Xem chi tiết
Phạm Gia Khánh
Xem chi tiết
Nguyễn Văn Trung
Xem chi tiết
hung
Xem chi tiết
Phạm Thị Hạnh
Xem chi tiết
Nam Khanh Le
Xem chi tiết