cho x+y+z=3.Tính GTNN của P=x4+y4+z4+12(1-x)(1-y)(1-z)
c) C = x(y2 +z2)+y(z2 +x2)+z(x2 +y2)+2xyz.
d) D = x3(y−z)+y3(z−x)+z3(x−y).
e) E = (x+y)(x2 −y2)+(y+z)(y2 −z2)+(z+x)(z2 −x2).
b) x2 +2x−24 = 0.
d) 3x(x+4)−x2 −4x = 0.
f) (x−1)(x−3)(x+5)(x+7)−297 = 0.
(2x−1)2 −(x+3)2 = 0.
c) x3 −x2 +x+3 = 0.
e) (x2 +x+1)(x2 +x)−2 = 0.
a) A = x2(y−2z)+y2(z−x)+2z2(x−y)+xyz.
b) B = x(y3 +z3)+y(z3 +x3)+z(x3 +y3)+xyz(x+y+z). c) C = x(y2 −z2)−y(z2 −x2)+z(x2 −y2).
1, Cho biết x+y=15 và xy=50. Tính giá trị của các biểu thức:
a. A=x2+y2
b. B=x4+y4
c. C=x2-y2
2, Cho biết x-y=15 và xy=50. Hãy tính x2+y2 ; x2-y2 rồi từ đó suy ra kết quả của x4-y4.
bài 4:phân tích mỗi đa thức sau thành nhân tích
a, 83 yz + 122yz + 6xyz + yz
b,81x4(z2 - y2) - z2 + y2
c,\(\dfrac{x^3}{8}\) - \(\dfrac{y^3}{27}\) +\(\dfrac{x}{2}\) - \(\dfrac{y}{3}\)
d, x6 + x4 + x2 y2 + y4 - y6
Cho x; y; z ≠ 0 thỏa mãn x + y + z = 0. Tính giá trị biểu thức: A = x y x 2 + y 2 − z 2 + y z y 2 + z 2 − x 2 + z x z 2 + x 2 − y 2
A. A = 1 2
B. A = - 1 2
C. A = - 3 2
D. A = 3 2
cho x+y+z=3
tìm minM: x4+y4+z4+12(1-x)(1-y)(1-z)
Câu 1 (3,0 điểm): Tính
a) 3x2 (2x2 − 5x − 4)
b) (x + 1)2 + ( x − 2 )(x + 3 ) − 4x
c) (6 x5 y2 − 9 x4 y3 +12 x3 y4 ) : 3x3 y2
Câu 2 (4,0 điểm): Phân tích đa thức thành nhân tử
a) 7x2 +14xy b) 3x + 12 − (x2 + 4x)
c ) x2 − 2xy + y2 − z2 d) x2 − 2x −15
Câu 3 (0,5 điểm): Tìm x
a) 3x2 + 6x = 0 b) x (x − 1) + 2x − 2 = 0
Câu 4 (2,0 điểm): Cho hình bình hành ABCD (AB > BC). Tia phân giác của góc D cắt AB ở E, tia phân giác của góc B cắt CD ở F.
a) Chứng minh DE song song BF
b) Tứ giác DEBF là hình gì?
Câu 5 (0,5 điểm ):
Chứng minh rằng A= n3 + (n+1)3 + (n+2)3 chia hết cho 9 với mọi n ∈ N*
Cho biết x + y = 15 và xy = 50. Tính giá trị của các biểu thức:
a) A = x2 + y2
b) B = x4 + y4
c) C = x2 − y2
Nếu thay giả thiết thành x − y = 15 và xy = 50. Hãy tính x2 + y2; x2 − y2. Từ đó suy ra kết quả của x4 − y4.
Cho x, y, z ≠0 và (y2+z2−x2)/2yz +(z2+x2−y2)/2xz +(x2+y2−z2)/2xy =1. Chứng minh rằng trong ba phân thức đã cho có một phân thức bằng 1 và một phân thức bằng -1.
Biết x + y = 2; x2 + y2 = 34; tính x3 + y3; x4 + y4