Áp dụng BĐT Cô-si dạng Engel,ta có :
\(P=\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}=1\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Áp dụng BĐT Cô-si dạng Engel,ta có :
\(P=\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}=1\)
Cho 3 số dương x,y,z thỏa mãn x+y+z=2. tìm GTNN của biểu thức : P = \(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\)
Cho x,y,z > 0. Tìm GTNN của
P = \(\frac{x^2}{x^2+2yz}+\frac{y^2}{y^2+2zx}+\frac{z^2}{z^2+2xy}\)
cho x,y>0 thỏa mãn \(^{x^2+y^2+z^2=1}\) tìm GTNN:
\(P=\frac{x}{y^2+z^2}+\frac{y}{z^2+x^2}+\frac{z}{y^2+x^2}\)
Chox,y,z>0,x+y+Z=2.Tim GTNN cua P=\(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\)
cho x , y ,z > 0 và x + y + z < hoặc bằng 3 / 2
tìm gtnn của A = x + y + z +\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
Cho x,y,z > 1;x+y+z=1
Tìm GTNN của \(M=\frac{x-2}{z^2}+\frac{y-2}{x^2}+\frac{z-2}{y^2}\)
1)Cho x+y+z=1
Tìm GTLN của \(\sqrt{x+y}+\sqrt{y+z}+\sqrt{z+x}\)
2) Cho \(x+y+z\le\frac{3}{2}\)
Tìm GTNN của \(\sqrt{x^2+\frac{1}{y^2}}+\sqrt{y^2+\frac{1}{z^2}}+\sqrt{z^2+\frac{1}{x^2}}\)
cho các số thực dương x,y,z thỏa mãn x+y+z=3 tìm gtnn của bt P=\(\frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}\)
cho x,y,z là các số thực dương thảo mãn \(\sqrt{x^2+y^2}+\sqrt{y^2+z^2}+\sqrt{z^2+x^2}=6\)= 6 .Tìm GTNN của biểu thức
M = \(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)