Áp dụng BĐT cosi:
\(\dfrac{x^2}{y+z}+\dfrac{y+z}{4}\ge2\sqrt{\dfrac{x^2\left(y+z\right)}{4\left(y+z\right)}}=\dfrac{2x}{2}=x\)
Cmtt \(\dfrac{y^2}{x+z}+\dfrac{x+z}{4}\ge y;\dfrac{z^2}{x+y}+\dfrac{x+y}{4}\ge z\)
Cộng VTV 3 BĐT trên:
\(\Leftrightarrow\dfrac{x^2}{y+z}+\dfrac{y^2}{x+z}+\dfrac{z^2}{x+y}+\dfrac{2\left(x+y+z\right)}{4}\ge x+y+z\\ \Leftrightarrow\dfrac{x^2}{y+z}+\dfrac{y^2}{x+z}+\dfrac{z^2}{x+y}\ge x+y+z-\dfrac{x+y+z}{2}=\dfrac{x+y+z}{2}\)
Dấu \("="\Leftrightarrow x=y=z\)