cho x+y+z=0 chung minh\(\frac{x\left(x+2\right)}{2x^2+1}+\frac{y\left(y+2\right)}{2y^2+1}+\frac{z\left(z+2\right)}{2z^2+1}>=0\)
\(\frac{x^4+y^4}{2}+\frac{y^4+z^4}{2}+\frac{z^4+x^4}{2}\ge x^2y^2+y^2z^2+z^2x^2\)
Chứng minh hằng đẳng thức trên
cho x,y,z dương;
\(3\left(x^4+y^4+z^4\right)-7\left(x^2+y^2+z^2\right)+12=0\)
tìm min
\(\frac{x^2}{y+2z}+\frac{y^2}{z+2x}+\frac{z^2}{x+2y}\)
cho x,y là các số thực dương thỏa mãn 3(x^4+y^4+z^4)-7(x^2+y^2+z^2)+12=0 . Tìm giá trị nhỏ nhất của biểu thức P=\(\frac{x^2}{y+2z}+\frac{y^2}{z+2x}+\frac{z^2}{x+2y}\)
cho x,y,z >0 thỏa mãn 3(x^4 +y^4 +z^4) - 7(x^2+y^2+z^2) +12= 0
Tìm giá trị nhỏ nhất của P= \(\frac{x^2}{y+2z}\)+ \(\frac{y^2}{z+2x}\)+ \(\frac{z^2}{x+2y}\)
cho x;y;z thỏa mãn x+y+z=3
CMR: \(\frac{2x^2+y^2+z^2}{4-yz}+\frac{2y^2+x^2+z^2}{4-xz}+\frac{2z^2+x^2+y^2}{4-xy}\ge4xyz\)
Các bạn giúp mình làm bài này với ạ!
Cho x, y, z > 0
Chứng minh rằng:
\(\frac{x^2}{2y}+\frac{y^2}{2x}+\frac{y^2}{2z}+\frac{z^2}{2y}+\frac{z^2}{2x}+\frac{x^2}{2z}\ge x+y+z.\)
Cho x, y, z thỏa mãn: \(\hept{\begin{cases}x^4-2y^2+1=0\\y^4-2z^2+1=0\\z^4-2x^2+1=0\end{cases}}\)
Tính: \(P=x^{2022}+y^{2020}+z^{2018}\)
Các cậu giúp hộ mik vs!!!
cho x, y,z >0 và 1/x +1/y +1/z =4 chứng minh rằng 1/2x+y+z +1/x+2y+z +1/x+y +2z =< 1