Violympic toán 9

Tuyển Trần Thị

cho x,y,z là các số thực dương tm xyz=8

cmr \(\dfrac{1}{2x+y+6}+\dfrac{1}{2y+z+6}+\dfrac{1}{2z+x+6}\le\dfrac{1}{4}\)

Akai Haruma
31 tháng 1 2018 lúc 18:17

Lời giải:

\(\frac{1}{2x+y+6}+\frac{1}{2y+z+6}+\frac{1}{2z+x+6}\leq \frac{1}{4}\)

\(\Leftrightarrow \frac{6}{2x+y+6}+\frac{6}{2y+z+6}+\frac{6}{2z+x+6}\leq \frac{3}{2}\)

\(\Leftrightarrow 1-\frac{2x+y}{2x+y+6}+1-\frac{2y+z}{2y+z+6}+1-\frac{2z+x}{2z+x+6}\leq \frac{1}{4}\)

\(\Leftrightarrow A=\frac{2x+y}{2x+y+6}+\frac{2y+z}{2y+z+6}+\frac{2z+x}{2z+x+6}\geq \frac{3}{2}\)

-----------------------

Thật vậy. Áp dụng BĐT Cauchy-Schwarz:

\(A=\frac{(2x+y)^2}{(2x+y)(2x+y+6)}+\frac{(2y+z)^2}{(2y+z)(2y+z+6)}+\frac{(2z+x)^2}{(2z+x)(2z+x+6)}\)

\(\geq \frac{(2x+y+2y+z+2z+x)^2}{ (2x+y)(2x+y+6)+(2y+z)(2y+z+6)+(2z+x)(2z+x+6)}\)

\(\Leftrightarrow A\geq \frac{9(x+y+z)^2}{5(x^2+y^2+z^2)+4(xy+yz+xz)+18(x+y+z)}\)

Ta sẽ cm \( \frac{9(x+y+z)^2}{5(x^2+y^2+z^2)+4(xy+yz+xz)+18(x+y+z)}\geq \frac{3}{2}\)

\(\Leftrightarrow \frac{3(x+y+z)^2}{5(x^2+y^2+z^2)+4(xy+yz+xz)+18(x+y+z)}\geq \frac{1}{2}\)

\(\Leftrightarrow x^2+y^2+z^2+8(xy+yz+xz)\geq 18(x+y+z)\)

\(\Leftrightarrow (x+y+z)^2+6(xy+yz+xz)\geq 18(x+y+z)(*)\)

Theo BĐT AM-GM: \((xy+yz+xz)^2\geq 3xyz(x+y+z)\)

\(\Leftrightarrow (xy+yz+xz)^2\geq 24xyz\Rightarrow xy+yz+xz\geq 2\sqrt{6(x+y+z)}\)

Đặt \(\sqrt{6(x+y+z)}=t\)

Có \((x+y+z)^2+6(xy+yz+xz)\geq \frac{t^4}{36}+12t\geq 18.\frac{t^2}{6}\)

\(\Leftrightarrow \frac{t^3}{36}+12\geq 3t\)

\(\Leftrightarrow t^3-108t+432\geq 0\)

\(\Leftrightarrow (t-6)^2(t+12)\geq 0\) (luôn đúng với mọi \(t\geq 0\) )

Do đó ta có \((*)\), từ \((*)\Rightarrow A\geq \frac{3}{2}\). CM kết thúc

Dấu bằng xảy ra khi \(x=y=z=2\)


Các câu hỏi tương tự
Hoai Bao Tran
Xem chi tiết
Vo Thi Minh Dao
Xem chi tiết
Cao Thị Thùy Linh
Xem chi tiết
Hoàng Ngọc Tuyết Nung
Xem chi tiết
Tobot Z
Xem chi tiết
dia fic
Xem chi tiết
Nguyễn Lâm Ngọc
Xem chi tiết
Ba Dao Mot Thoi
Xem chi tiết
Andromeda Galaxy
Xem chi tiết